

Lecture Notes in Artificial Intelligence 3601
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Gianluca Moro Sonia Bergamaschi
Karl Aberer (Eds.)

Agents
and Peer-to-Peer
Computing

Third International Workshop, AP2PC 2004
New York, NY, USA, July 19, 2004
Revised and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Gianluca Moro
University of Bologna
Department of Electronics, Computer Science and Systems
Via Venezia, 52, 47023 Cesena (FC), Italy
E-mail: gmoro@deis.unibo.it

Sonia Bergamaschi
University of Modena and Reggio Emilia
IEIIT CNR, Dip. di Ingegneria dell’Informazione
via Vignolese, 905, 41100 Modena, Italy
E-mail: bergamaschi.sonia@unimo.it

Karl Aberer
Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences
1015 Lausanne, Switzerland
E-mail: karl.aberer@epfl.ch

Library of Congress Control Number: 2005934716

CR Subject Classification (1998): I.2.11, I.2, C.2.4, C.2, H.4, H.3, K.4.4

ISSN 0302-9743
ISBN-10 3-540-29755-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29755-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11574781 06/3142 5 4 3 2 1 0

Preface

Peer-to-peer (P2P) computing is attracting enormous media attention, spurred
by the popularity of file sharing systems such as Napster, Gnutella, and Mor-
pheus. The peers are autonomous, or as some call them, first-class citizens. P2P
networks are emerging as a new distributed computing paradigm for their po-
tential to harness the computing power of the hosts composing the network and
make their underutilized resources available to others. This possibility has gener-
ated a lot of interest in many industrial organizations that have already launched
important projects.

In P2P systems, peer and Web services in the role of resources become shared
and combined to enable new capabilities greater than the sum of the parts. This
means that services can be developed and treated as pools of methods that can
be composed dynamically. The decentralized nature of P2P computing makes it
also ideal for economic environments that foster knowledge sharing and collabo-
ration as well as cooperative and non-cooperative behaviors in sharing resources.
Business models are being developed that rely on incentive mechanisms to sup-
ply contributions to the system and methods for controlling free riding. Clearly,
the growth and the management of P2P networks must be regulated to ensure
adequate compensation of content and/or service providers. At the same time,
there is also a need to ensure equitable distribution of content and services.

Although researchers working on distributed computing, multiagent systems,
databases and networks have been using similar concepts for a long time, it is
only recently that papers motivated by the current P2P paradigm have started
appearing in high-quality conferences and workshops. Research in agent sys-
tems in particular appears to be most relevant because, since their inception,
multiagent systems have always been thought of as networks of peers.

The multiagent paradigm can thus be superimposed on the P2P architecture,
where agents embody the description of the task environments, the decision-
support capabilities, the collective behavior, and the interaction protocols of
each peer. The emphasis in this context on decentralization, user autonomy,
ease and speed of growth that gives P2P its advantages also leads to significant
potential problems. Most prominent among these problems are coordination, the
ability of an agent to make decisions on its own actions in the context of activ-
ities of other agents, and scalability, the value of the P2P systems lies in how
well they scale along several dimensions, including complexity, heterogeneity of
peers, robustness, traffic redistribution, and so on. It is important to scale up
coordination strategies along multiple dimensions to enhance their tractability
and viability, and thereby to widen the application domains. These two prob-
lems are common to many large-scale applications. Without coordination, agents
may be wasting their efforts, squandering resources and failing to achieve their
objectives in situations requiring collective effort.

VI Preface

This workshop brought together researchers working on agent systems and
P2P computing with the intention of strengthening this connection. These objec-
tives are accomplished by bringing together researchers and contributions from
these two disciplines but also from more traditional areas such as distributed
systems, networks and databases.

We sought high-quality and original contributions on the general theme of
“Agents and P2P Computing”. The following is a non-exhaustive list of topics
of special interest:

– intelligent agent techniques for P2P computing
– P2P computing techniques for multi-agent systems
– the Semantic Web and semantic coordination mechanisms for P2P systems
– scalability, coordination, robustness and adaptability in P2P systems
– self-organization and emergent behavior in P2P systems
– e-commerce and P2P computing
– participation and contract incentive mechanisms in P2P systems
– computational models of trust and reputation
– community of interest building and regulation, and behavioral norms
– intellectual property rights and legal issues in P2P systems
– P2P architectures
– scalable data structures for P2P systems
– services in P2P systems (service definition languages, service discovery, fil-

tering and composition etc.)
– knowledge discovery and P2P data mining agents
– P2P-oriented information systems
– information ecosystems and P2P systems
– security considerations in P2P networks
– ad-hoc networks and pervasive computing based on P2P architectures and

wireless communication devices
– grid computing solutions based on agents and P2P paradigms

This volume is the postproceedings of AP2PC 2004, the 3rd International
Workshop on Agents and P2P Computing,1 held in New York City on July 19,
2004 in the context of the 3rd International Joint Conference on Autonomous
Agents and Multi-agent Systems (AAMAS 2004).

These proceedings contain papers presented at AP2PC 2004 fully revised
according to reviewers’ comments and discussions at the workshop, plus three
invited papers related to the invited talk and the panel. The volume is organized
according to the following sessions held at the workshop:

– P2P networks and search performance
– emergent communities and social behaviors
– semantic integration
– mobile P2P systems

1 http://p2p.ingce.unibo.it/

Preface VII

– adaptive systems
– agent-based resource discovery
– trust and reputation

We would like to thank the invited speaker Hector Garcia-Molina, full profes-
sor and chairman in the Department of Computer Science at Stanford University,
for his talk on semantic overlay networks for P2P systems.

We would also like to thank Munindar P. Singh, full professor in the De-
partment of Computer Science at North Carolina State University, for chairing
the panel with the theme “Conducting Business via P2P and Emerging Mission-
Critical Applications”. We express our deepest appreciation for the workshop
participants (more than 40 people) for their lively discussions, in particular for
the invited panelists: Sonia Bergamaschi, Hector Garcia-Molina, Sandip Sen and
Steven Willmott.

After distributing the call for papers for the workshop, we received 34 pa-
pers. All submissions were reviewed for scope and quality, 12 were accepted as
full papers and 8 as short contributions. We would like to thank the authors for
their submissions and the members of the Program Committee for reviewing the
papers under time pressure and for their support for the workshop. Finally, we
would like to acknowledge the Steering Committee for its guidance and encour-
agement.

This workshop followed the successful second edition, which was held in con-
junction with AAMAS in Melbourne, Australia in 2003. In recognition of the
interdisciplinary nature of P2P computing, a sister event called the Second Inter-
national Workshop on Databases, Information Systems, and P2P Computing2

was held in Toronto in September 2004 in conjunction with the International
Conference on Very Large Data Bases (VLDB).

Fall 2004 Gianluca Moro (University of Bologna)
Sonia Bergamaschi (University of Modena and Reggio-Emilia)

Karl Aberer (EPFL)

2 http://dbisp2p.ingce.unibo.it/

Executive Committee

Organizers

Program Co-chairs Gianluca Moro
Dept. of Electronics, Computer Science and Systems,
University of Bologna, Italy

Sonia Bergamaschi
Dept. of Science Engineering,
University of Modena and Reggio-Emilia, Italy

Karl Aberer
École Polytechnique Fédérale de Lausanne (EPFL)
Switzerland

Panel Chair Munindar P. Singh
Dept. of Computer Science,
North Carolina State University, USA

Steering Committee

The Steering Committee consists of the above plus the following people:

Manolis Koubarakis, Dept. of Electronic and Computer Engineering,
Technical University of Crete, Greece

Paul Marrow, Intelligent Systems Laboratory,
BTexact Technologies, UK

Aris M. Ouksel, Dept. of Information and Decision Sciences,
University of Illinois at Chicago, USA

Claudio Sartori,
IEIIT-BO-CNR, University of Bologna, Italy

Webmaster of
Review System

Sam Joseph
Laboratory for Interactive Learning Technology (LILT),
University of Hawaii, USA

X Organization

Program Committee

Karl Aberer, EPFL, Lausanne, Switzerland
Sonia Bergamaschi, University of Modena and Reggio-Emilia, Italy
Jon Bing, University of Oslo, Norway
M. Brian Blake, Georgetown University, USA
Rajkumar Buyya, University of Melbourne, Australia
Ooi Beng Chin, National University of Singapore, Singapore
Paolo Ciancarini, University of Bologna, Italy
Costas Courcoubetis, Athens University of Economics and Business, Greece
Yogesh Deshpande, University of Western Sydney, Australia
Asuman Dogac, Middle East Technical University, Turkey
Boi V. Faltings, EPFL, Lausanne, Switzerland
Maria Gini, University of Minnesota, USA
Dina Q. Goldin, University of Connecticut, USA
Chihab Hanachi, University of Toulouse, France
Mark Klein, Massachusetts Institute of Technology, USA
Matthias Klusch, DFKI, Saarbrücken, Germany
Yannis Labrou, PowerMarket Inc., USA
Tan Kian Lee, National University of Singapore, Singapore
Zakaria Maamar, Zayed University, UAE
Dejan Milojicic, Hewlett-Packard Labs, USA
Alberto Montresor, University of Bologna, Italy
Luc Moreau, University of Southampton, UK
Jean-Henry Morin, University of Geneva, Switzerland
John Mylopoulos, University of Toronto, Canada
Andrea Omicini, University of Bologna, Italy
Maria Orlowska, University of Queensland, Australia
Aris. M. Ouksel, University of Illinois at Chicago, USA
Mike Papazoglou, Tilburg University, Netherlands
Terry R. Payne, University of Southampton, UK
Paolo Petta, Austrian Research Institute for AI, Austria
Jeremy Pitt, Imperial College London, UK
Dimitris Plexousakis, Institute of Computer Science, FORTH, Greece
Martin Purvis, University of Otago, New Zealand
Omer F. Rana, Cardiff University, UK
Katia Sycara, Robotics Institute, Carnegie Mellon University, USA
Douglas S. Reeves, North Carolina State University, USA
Thomas Risse, Fraunhofer IPSI, Darmstadt, Germany
Pierangela Samarati, University of Milan, Italy
Giovanni Sartor, CIRSFID, University of Bologna, Italy
Christophe Silbertin-Blanc, University of Toulouse, France
Maarten van Steen, Vrije Universiteit, Netherlands
Markus Stumptner, University of South Australia, Australia
Peter Triantafillou, Technical University of Crete, Greece
Anand Tripathi, University of Minnesota, USA

Organization XI

Vijay K. Vaishnavi, Georgia State University, USA
Francisco Valverde-Albacete, Universidad Carlos III de Madrid, Spain
Maurizio Vincini, University of Modena and Reggio-Emilia, Italy
Fang Wang, BTexact Technologies, UK
Gerhard Weiss, Technische Universität München, Germany
Bin Yu, North Carolina State University, USA
Franco Zambonelli, University of Modena and Reggio-Emilia, Italy

Additional Reviewers and Helpers

We would like to thank the following additional reviewers for their valuable help:

– Luca Caviglione
– Julio Cesar Hernandez Castro
– Lican Huang
– Samuel Joseph
– Stefano Morini
– Wolfgang Mueller
– Ben Strulo
– Dimitrios Tsoumakos
– Alessandra Villecco
– Emily Weitzanböck

Finally thanks also to Jonathan Gelati for his technical help in putting to-
gether the electronic version of this volume.

Preceding Editions of AP2PC

Here are the references to the preceding editions of AP2PC, including the vol-
umes of revised and invited papers:

– AP2PC 2002 was held in Bologna, Italy, July 15th, 2002. The website can be
found at http://p2p.ingce.unibo.it/2002/. The proceedings were published
by Springer as LNCS Vol. 2530 and are available online here: http://www.
springerlink.com/link.asp?id=6qr2pb576my5

– AP2PC 2003 was held in Melbourne, Australia, July 14th, 2003. The web-
site can be found at http://p2p.ingce.unibo.it/2003/. The proceedings were
published by Springer as LNCS Vol. 2872.

Table of Contents

Invited Talk

Semantic Overlay Networks for P2P Systems
Arturo Crespo, Hector Garcia-Molina . 1

Peer-to-Peer Network and Search Performance

Unstructured Peer-to-Peer Networks: Topological Properties and
Search Performance

George H.L. Fletcher, Hardik A. Sheth, Katy Börner 14

Distributed Hash Queues: Architecture and Design
Chad Yoshikawa, Brent Chun, Amin Vahdat . 28

DiST: A Scalable, Efficient P2P Lookup Protocol
Savitha Krishnamoorthy, Karthikeyan Vaidyanathan,
Mario Lauria . 40

A Policy for Electing Super-Nodes in Unstructured P2P Networks
Georgios Pitsilis, Panayiotis Periorellis, Lindsay Marshall 54

Emergent Communities and Social Behaviours

ACP2P: Agent Community Based Peer-to-Peer Information Retrieval
Tsunenori Mine, Daisuke Matsuno, Akihiro Kogo,
Makoto Amamiya . 62

Emergent Structures of Social Exchange in Socio-cognitive Grids
Daniel Ramirez-Cano, Jeremy Pitt . 74

Permission and Authorization in Policies for Virtual Communities of
Agents

Guido Boella, Leendert van der Torre . 86

On Exploiting Agent Technology in the Design of Peer-to-Peer
Applications

Steven Willmott, Josep M. Pujol, Ulises Cortés 98

XIV Table of Contents

Semantic Integration

Peer-to-Peer Semantic Integration of XML and RDF Data Sources
Isabel F. Cruz, Huiyong Xiao, Feihong Hsu . 108

The SEWASIE Multi-agent System
Sonia Bergamaschi, Pablo R. Fillottrani, Gionata Gelati 120

Mobile P2P Systems

Service Discovery on Dynamic Peer-to-Peer Networks Using Mobile
Agents

Evan A. Sultanik, William C. Regli . 132

An Agent Module for a System on Mobile Devices
Praveen Madiraju, Sushil K. Prasad, Rajshekhar Sunderraman,
Erdogan Dogdu . 144

Multi-agent System Technology for P2P Applications on Small Portable
Devices

Martin Purvis, Noel Garside, Stephen Cranefield,
Mariusz Nowostawski, Marcos De Oliveira . 153

Adaptive Systems

Coordinator Election Using the Object Model in P2P Networks
Hirokazu Yoshinaga, Takeshi Tsuchiya, Keiichi Koyanagi 161

The Dynamics of Peer-to-Peer Tasks: An Agent-Based Perspective
Xiaolong Jin, Jiming Liu, Zhen Yang . 173

Peer-to-Peer Computing in Distributed Hash Table Models Using a
Consistent Hashing Extension for Access-Intensive Keys

Arnaud Dury . 185

A Practical Peer-Performance-Aware DHT
Yan Tang, Zhengguo Hu, Yang Zhang, Lin Zhang,
Changquan Ai . 193

Agent-Based Resource Discovery

Peer-to-Peer Data Lookup for Multi-agent Systems
Michael Thomas, William Regli . 201

Table of Contents XV

Intelligent Agent Enabled Genetic Ant Algorithm for P2P Resource
Discovery

Prithviraj(Raj) Dasgupta . 213

Photo Agent: An Agent-Based P2P Sharing System
Jane Yung-jen Hsu, Jih-Yin Chen, Ting-Shuang Huang,
Chih-He Chiang, Chun-Wei Hsieh . 221

Trust and Reputation

How Social Structure Improves Distributed Reputation
Systems - Three Hypotheses

Philipp Obreiter, Stefan Fähnrich, Jens Nimis . 229

Opinion Filtered Recommendation Trust Model in Peer-to-Peer
Networks

Weihua Song, Vir V. Phoha . 237

Author Index . 245

Semantic Overlay Networks for P2P Systems

Arturo Crespo and Hector Garcia-Molina

Stanford University
{crespo, hector}@cs.stanford.edu

Abstract. In a peer-to-peer (P2P) system, nodes typically connect to a
small set of random nodes (their neighbors), and queries are propagated
along these connections. Such query flooding tends to be very expensive.
We propose that node connections be influenced by content, so that for
example, nodes having many “Jazz” files will connect to other similar
nodes. Thus, semantically related nodes form a Semantic Overlay Net-
work (SON). Queries are routed to the appropriate SONs, increasing the
chances that matching files will be found quickly, and reducing the search
load on nodes that have unrelated content. We have evaluated SONs by
using an actual snapshot of music-sharing clients. Our results show that
SONs can significantly improve query performance while at the same
time allowing users to decide what content to put in their computers
and to whom to connect.

1 Introduction

Peer-to-peer systems (P2P) have grown dramatically in recent years. They offer
the potential for low cost sharing of information, autonomy, and privacy. How-
ever, query processing in current P2P systems is very inefficient and does not
scale well. The inefficiency arises because most P2P systems create a random
overlay network where queries are blindly forwarded from node to node. As an
alternative, there have been proposals for “rigid” P2P systems that place con-
tent at nodes based on hash functions, thus making it easier to locate content
later on (e.g., [1, 2]). Although such schemes provide good performance for point
queries (where the search key is known exactly), they are not as effective for
approximate, range, or text queries. Furthermore, in general, nodes may not be
willing to accept arbitrary content nor arbitrary connections from others.

In this paper we propose Semantic Overlay Networks (SONs), a flexible net-
work organization that improves query performance while maintaining a high
degree of node autonomy. With Semantic Overlay Networks (SONs), nodes with
semantically similar content are “clustered” together. To illustrate, consider Fig-
ure 1 which shows eight nodes, A to H , connected by the solid lines. When using
SONs, nodes connect to other nodes that have semantically similar content. For
example, nodes A, B, and C all have “Rock” songs, so they establish connec-
tions among them. Similarly, nodes C, E, and F have “Rap” songs, so they
cluster close to each other. Note that we do not mandate how connections are
done inside a SON. For instance, in the Rap SON node C is not required to
connect directly to F . Furthermore, nodes can belong to more than one SON

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 A. Crespo and H. Garcia-Molina

Rock

Rap

Jazz

Country

Fig. 1. Semantic Overlay Networks

(e.g., C belongs to the Rap and Rock SONs). In addition to the simple partition-
ing illustrated by Figure 1, in this paper we will also explore the use of content
hierarchies, where for example, the Rock SON is subdivided into “Soft Rock”
and “Hard Rock.”

In a SON system, queries are processed by identifying which SON (or SONs)
are better suited to answer it. Then the query is sent to a node in those SONs
and the query is forwarded only to the other members of that SON. In this way, a
query for Rock songs will go directly to the nodes that have Rock content (which
are likely to have answers for it), reducing the time that it takes to answer the
query. Almost as important, nodes outside the Rock SON (and therefore unlikely
to have answers) are not bothered with that query, freeing resources that can be
used to improve the performance of other queries.

There are many challenges when building SONs. First, we need to be able to
classify queries and nodes (what does “contain rock songs” means?). We need to
decide the level of granularity for the classification (e.g., just rock songs versus
soft, pop, and metal rock) as too little granularity will not generate enough
locality, while too much would increase maintenance costs. We need to decide
when a node should join a SON (if a node has just a couple of documents on
“rock,” do we need to place it in the same SON as a node that has hundreds
of “rock” documents?). Finally, we need to choose which SONs to use when
answering a query.

Many of our questions can only be answered empirically by studying real P2P
content and how well it can be organized into SONs. For our empirical evaluation
we have chosen music-sharing systems. These systems are of interest not only
because they are the biggest P2P application ever deployed, but also because
music semantics are rich enough to allow different classification hierarchies. In
addition there is a significant amount of data available that allows us to perform
realistic evaluations. While our experimental results in this paper are particular
to this important application, we have no reason to believe they would not apply
in other applications with good classification hierarchies.

Semantic Overlay Networks for P2P Systems 3

Also note that due to space limitations, in this paper we do not present the
full results of our work. A more detailed and formal description of our approach,
as well as additional experimental results, can be found in the extended version
of this paper [3].

2 Related Work

The idea of placing data in nodes close to where relevant queries originate was
used in early distributed database systems [4]. However, the algorithms used
for distributed databases are based on two fundamental assumptions that are
not applicable to P2P systems: that there are a small number of stables nodes,
and that the designer has total control over the data. There are a number of
P2P research systems (CAN [2], CHORD [1], Oceanstore [5], Pastry [6], and
Tapestry [7]) that are designed so documents can be found with a very small
number of messages. However, all these techniques either mandate a specific net-
work structure or assume total control over the location of the data. Although
these techniques may be appropriate in some application, the lack of node au-
tonomy has prevented their use in wide-scale P2P systems. There is a large
corpus of work on document clustering using hierarchical systems (see [8] for a
survey). However, most clustering algorithms assume that documents are part
of a controlled collection located at a central database. Clustering algorithms
for decentralized environments have also been studied in the context of the web.
However, these techniques depend on crawling the data into a centralized site
and then using clustering techniques to either make web search results more ac-
curate (as in SONIA [9]) or easier to understand. A more decentralized approach
has been taken by Edutella [10].

3 Semantic Overlay Networks

In this section we introduce informally the concept of Semantic Overlay Networks
(SONs) (see [3] for a formal definition). In a P2P system, the links between the
nodes typically form a single overlay network. In this paper we advocate the
creation of multiple overlay networks to improve search performance. We do not
focus on on how queries are routed within an overlay network (see Section 2 for a
brief overview of current solutions to the intra-overlay network routing problem).
Therefore, we will ignore the link structure within an overlay network and we
will represent an overlay network just by the set of nodes in it.

Requests for documents are made by issuing a query q and some additional
system-dependent information (such as the horizon of the query). A query is
also system dependent and it can be as simple as a document identifier, or
keywords, or even a complex SQL query. In this paper we assume that queries
are partial, so the request includes a minimum number of results that need to
be returned.

4 A. Crespo and H. Garcia-Molina

Fig. 2. Classification Hierarchies

3.1 Classification Hierarchies

Our objective is to define a set of overlay networks in such a way that, when given
a request, we can select a small number of overlay networks whose nodes have a
“high” number of hits. The benefit of this strategy is two fold. First, the nodes
to which the request is sent will have many matches, so the request is answered
faster; and second, but not less important, the nodes that have few results for
this query will not receive it, avoiding wasting resources on that request (and
allowing other requests to be processed faster).

We propose using a classification hierarchy as the basis of the formation of
the overlay networks. For example, in Figure 2, we show 3 possible classification
hierarchies for music documents. In the first one, music documents are classified
according to their style (rock, jazz, etc.) and their substyle (soft, dance, etc.);
in the second one, they are classified by decade; and in the third one, they are
classified by tone (warm, exciting, etc.).

Each document and query is classified into one or more leaf concepts in the
hierarchy. However, in practice, classification procedures may be imprecise as
they may not able to determine exactly to which concept a query or document
belongs. In this case, imprecise classification functions may return non-leaf con-
cepts, meaning that document or query belongs to one or more descendant of the
non-leaf concept, but the classifier cannot determine which one. For example,
when using the leftmost classification hierarchy of Figure 2, a “Pop” document
may be classified as “Rock” if the classifier cannot determine to which substyle
(“Pop,” “Dance,” or “Soft”) the document actually belongs. Classifiers may also
make mistakes by returning the wrong concept for a query or document. We call
the set of documents that classify into the same concept the “bucket” of that
concept.

In a P2P system, documents are actually kept by nodes. Therefore, we need
to classify nodes, rather than documents. We call a group of semantically related
nodes a Semantic Overlay Network (SON), and we associate each SON with a
concept in the classification hierarchy. We call a SON associated with concept c,
the SON for c or SONc. For example, in the leftmost hierarchy in Figure 2 (if we

Semantic Overlay Networks for P2P Systems 5

Fig. 3. Generating Semantic Overlay Networks

assume that only the its only concepts are the ones shown), we will define at 9
SONs: 6 associated with the leaf nodes (soft, dance, pop, New Orleans, etc.), one
associated with rock, another associate with jazz, and a final one associate with
music. To completely define a SON, we need to explain how nodes are assigned
to SONs and how we decide which SONs to use to answer a query.

A node decides which SONs to join based on the classification of its doc-
uments. There are many strategies for node placement. For example, we may
place a node in SONc if it has any document classified in c. This strategy is very
conservative as it will place a node in SONc if just one document classifies as c.
A less conservative strategy will place a node in SONc if a “significant” num-
ber of document classifies as c. Such less-conservative strategy has two effects:
it reduces the number of nodes in a SON and it reduces the number of SONs
to which a node belongs. The first of these effects increases the advantages of
SONs as fewer nodes need to be queried. The second effect reduces the cost of
SONs as the greater the number of SONs to which a node belongs, the greater
the the node overhead for handling many different connections. However, a less
conservative strategy may prevent us from finding all documents that match a
query. In the extended version of this paper, we study different strategies for
assignment of nodes to SONs.

After assigning nodes to SON, we may make adjustments to the SONs based
on the actual data distributions in the nodes. For example, if we observe that a
SON contains only a very small number of nodes, we may want to consolidate
that SON with a sibling or its parent in order to reduce overhead.

To summarize, the process of building and using SONs is depicted in Fig-
ure 3. First, we evaluate potential classification hierarchies using the actual data
distributions in the nodes (or a sample of them) and find a good hierarchy. This
hierarchy will be stored by all (or some) of the nodes in the system and it is
used to define the SONs. A node joining the system, first floods the network
with requests for the hierarchy in a Gnutella fashion (we do not address se-

6 A. Crespo and H. Garcia-Molina

curity problems in this paper, but inconsistent hierarchies may be detected by
obtaining the hierarchy from multiple sources and using a majority rule). Then,
the node runs a document classifier based on the hierarchy obtained on all its
documents. Then, a node classifier assigns the node to specific SONs (by, for
example, using the conservative strategy described in this section). The node
joins each SON by finding nodes that belong to those SONs. This can be done
again in a Gnutella fashion (flooding the network until nodes in that SON are
found) or by using a central directory. When the node issues a query, first it
classifies it and sends it to the appropriate SONs (nodes in those SONs can be
found in a similar fashion as when the node connected to its SON). After the
query is sent to the appropriate SONs, nodes within the SON find matches by
using some propagation mechanism (such as Gnutella flooding or super peers).

In the next sections, we will study the challenges and present solutions for
building a P2P system using Semantic Overlay networks. We will evaluate our
solutions by simulating a music-sharing system based on real data from Nap-
ster [11] and OpenNap [12]. Specifically, in this paper we will address the fol-
lowing challenges:

– Classifying queries and documents (Section 4): Imprecise classifiers can map
too many documents and queries to higher levels of the hierarchy, making
searches more expensive. What are the options for building classifiers? Are
they precise enough for our needs? What is the impact of classification errors?

– Searching SONs (Section 6): How do we search SONs? Is it worth having Se-
mantic Overlay Networks? Is the search performance of a SON-based system
better than a single-overlay network system such as Gnutella?

– SON membership When should a node join a SON? What is the cost of
joining a SON? Can we reduce the number of SONs that a node needs to
belong to (while being able to find most results)?

4 Classifying Queries and Documents

In this section we describe how documents and queries are classified. Although
the problem of classifying documents and the problem of classifying queries are
very similar, the requirements for the document and query classifiers can be very
different. Specifically, it is reasonable to expect that nodes will join a relatively
stable P2P network at a low rate (a few per minute); while we could expect
a much higher query rate (hundreds or even more per second). Additionally,
node classification is more bursty as when a node joins the network it may have
hundreds of documents to be classified; on the other hand, queries will likely to
arrive at a more regular rate. Under these conditions, the document classifier
can use a very precise (but time consuming) algorithm that can process in batch
a large number of documents; while, the query classifier must be implemented
by a fast algorithm that may have to be imprecise.

The classification of documents and queries can be done automatically, man-
ually, or by a hybrid processes. Examples of automatic classifiers include text

Semantic Overlay Networks for P2P Systems 7

matching [13], Bayesian networks [14], and clustering algorithms [15]. These au-
tomatic techniques have been extensively studied and they are beyond the scope
of this paper. Manual classification may be achieved by requiring users to tag
each query with the style or substyle of the intended results. If the user does
not know the substyle or style of the potential results, he can always select the
root of the hierarchy so all nodes are queried. Finally, hybrid classifiers aid the
manual classification with databases as we will see shortly in our experiments.

4.1 Evaluating Our Document Classifier

Documents were classified by probing the database of All Music Guide at allmu-
sic.com [16]. In this database songs and artists are classified using a hierarchy
of style/substyle concepts equivalent to the leftmost classification hierarchy of
Figure 2. Recall that for each Napster node used in our evaluation we had a list
of filenames with the format “directory/author-song title.mp3.” As a first step,
the document classifier extracted the author and the song title for the file. The
classifier then probed the database with that author and song and obtained a
list of possible song matches. Finally, the classifier selected the highest rank song
and found its style and substyles. If there were not matches in the database, the
classifier assigned “unknown” to the style and substyle of the file.

There were many sources of errors when using our document classifier. First,
the format of the files may not follow the expected standard, so the extraction
of the author and song title may return erroneous values. Second, we assumed
that all files were music (but Napster could be, and was actually used, to share
other kind of files). Third, users made misspellings in the name of artist and/or
song (to reduce the effect of misspellings, we used a phonetic search in the All
Music database, so some common misspellings did not affect the classification).
Finally, the All Music database is not complete, which is especially true in the
case of classical music.

To evaluate the document classifier, we measured the number of incorrect
classifications. We selected 200 random filenames and manually found the sub-
styles to which they belong (occasionally using the All Music database and

Fig. 4. Choosing SONs to join

8 A. Crespo and H. Garcia-Molina

Google as an aid to find the substyles of obscure pieces). We then compared
the manual classification with the one obtained from our document classifier.
We considered a classification to be incorrect for a given document if the doc-
ument classifier returned one or more substyles to which the document should
not belong. Note that an “unknown” classification from our classifier, although
very imprecise, is not incorrect as it would correspond to the root node of the
classification hierarchy. In our evaluation, we found that 25% of the files were
classified incorrectly.

However, a node can still be correctly classified even if some of its documents
are misclassified. (If a node is properly classified, it will be possible to find
the misclassified documents later on.) To evaluate the true effect of document
misclassification, we selected 20 random nodes, we classified all their documents,
and assigned the nodes to all the substyles of their respective documents. We
considered a classification to be incorrect for a given node if the node was not
assigned to one or more substyles to which the node should belong. In our
evaluation, we found that only 4% of the nodes were classified incorrectly. This
result shows that errors when classifying documents tend to cancel each other
within a node. Specifically, even if we fail to classify a document as, for example,
“Pop” it is likely that there will be some other “Pop” document in the node that
will be classified correctly so the node will still be in the “Pop” SON.

4.2 Evaluating Our Query Classifier

For our experiments, queries were classified by hand by the authors of this paper.
Queries were either classified in one or more substyles, a single style, or as
“music”(the root of the hierarchy). In our experiments we used queries obtained
from traces of actual queries sent to an OpenNap server run at Stanford [17].
Thus, by manually classifying queries, we are “guessing” what the users would
have selected from say a drop-down menu as they submitted their queries.

Unfortunately, we cannot evaluate the correctness of the query classification
method (we, of course, consider our classification of all queries to be correct).
Nevertheless, we can study how precise our manual classification was (i.e., how
many times queries were classified into a substyle, a style, or at the root of the
classification hierarchy). We selected a trace of 50 distinct queries (the original
query trace contained many duplicates which the authors of [17] believed were
the result of cycles in the OpenNap overlay network) and then manually classified
those queries. The result was that 8% of the queries were classified at the root of
the hierarchy, 78% were classified a the style level of the hierarchy and 14% at the
substyle level. In the extended version of this paper we show that the distribution
of queries over hierarchy levels impacts the overall system performance, as more
precisely classified queries can be executed more efficiently.

5 Nodes and SON Membership

In Section 3 we presented a conservative strategy for nodes to decide which SONs
to join. Basically, under this strategy, nodes join all the SONs associated with a

Semantic Overlay Networks for P2P Systems 9

concept for which they have a document. This strategy guarantees that we will
be able to find all the results, but it may increase both the number of nodes in
each SON and the number of connections that a node needs to maintain. A less
conservative strategy, where nodes join some of all the possible SONs, can have
better performance. In this section we introduce a non-conservative assignment
strategy: Layered SONs.

The Layered SONs approach exploits the very common zipfian data distri-
bution in document storage systems. (It has been shown that the number of
documents in a website when ranked in order of decreasing frequency, tend to
be distributed according to Zipf’s Law [18].) For example, on the left side of
Figure 4 we present a hypothetical histogram for a node with a zipfian data dis-
tribution (we’ll explain the rest of the figure shortly). In this histogram we can
observe that 45% of the documents in the node belong to category c1, about 35%
of the documents belong to category c2, while the remaining documents belong
to categories c3 to c8. Thus, which SONs should the node join? The conservative
strategy mandates that the node need to join SONc1 through SONc8 . However,
if we assume that queries are uniform over all the documents in a category, it is
clear that the node will have a higher probability of answering queries in SONc1

and SONc2 than queries in the other SONs. In other words, the benefit of having
the node belong to SONc1 and SONc2 is high, while the benefit of joining the
other SONs will be very small (and even negative due to the overhead of SONs).
A very simple and aggressive alternative would be to have the node join only
SONc1 and SONc2 . However, this alternative would prevent the system from
finding the documents in the node that do not belong to categories c1 and c2.

Nodes determine which SONs to join based on the number of documents in
each category. To illustrate, consider again Figure 4. At the right of the figure we
present the hierarchy of concepts that will aid a node in deciding which SONs
to join. In addition, a parameter of the Layered SON approach is the minimum
percentage of documents that a node should have in a category to belong to the
associated SON (alternatively, we can also use an absolute number of documents
instead of a percentage). In the example, we have set that number at 15%. Let us
now determine which SONs the node with the histogram at the left of Figure 4
should join. First, we consider all the base categories in the hierarchy tree (c1 to
c8). As c1 and c2 are above 15%, the node joins SONc1 and SONc2 . As all the
remaining categories are all below 15%, the node does not join their SONs. We
then consider the second level categories (c9, c10, and c11). As the combination of
the non-assigned descendants of c9, c3 and c4, is higher than 15%, the node joins
SONc9 . However, the node does not join the SON of c10 as the combination of c5
and c6 are not above 15%. Similarly the node does not join the SONs of c11 as c7
and c8 are below the threshold. Finally, the node joins the SON associated with
the root of the tree (SONc12) as there were categories (c5, c6, c7 and c8) that
are not part of any assignment. This final assignment is done regardless of the
15% threshold as this ensures that all documents in the node can be found (in
our example, if we do not join SONc12 we will not be able to find the documents
in the SONs of c5, c6, c7 and c8).

10 A. Crespo and H. Garcia-Molina

The conservative assignment is equivalent to a Layered SON where the
threshold for joining a SON has been set to 0%. In this case, the node will
join the SONs associated with all the base concepts for which it has one or more
documents.

6 Searching SONs

In this section, we explore the problem of how to choose among a set of SONs
when using Layered SONs. (We discussed in Section 3.1 the mechanisms used
by nodes to actually send the queries to those SONs.)

6.1 Searching with Layered SONs

Searches in Layered SONs are done by first classifying the query. Then, the query
is sent to the SON (or SONs) associated with the base concept (or concepts)
of the query classification. Finally, the query is progressively sent higher up in
the hierarchy until enough results are found. In case more than one concept is
returned by the classifier, we do a sequential search in all the concepts returned
before going higher up in the hierarchy. For example, when looking for a “Soft
Rock” file we start with the nodes in the “Soft Rock” SON. If not enough
results are found (recall that partial queries have a target number of results), we
send the query to the “Rock” SON. Finally, if we still have not found enough
results, we send the query to the “Music” SON. There are multiple approaches
when searching with Layered SONs. In this paper we are concentrating on a
single serial one (as our objective is to minimize number of messages). However,
there are other approaches such as searching more than one SON in parallel
(by asking each one for some fraction of the target results) which may result in
higher number of messages, but will start producing results faster.

This search algorithm does not guarantee that all documents will be found if
there are classification mistakes for documents. Not finding all documents may
or may not be a problem depending on the P2P system, but in general, if we
need to find all documents for a query (in the presence of classification mistakes),
our only option is an exhaustive search among all nodes in the network. How-
ever, we will see that with our document classifier (which has an per-document
classification mistake probability of 25%), we can find more than 95% of the
documents that match a query. In addition, this search algorithm may result in
duplicate results. Specifically, duplication can happen when a node belongs, at
the same time, to a SON associated with a substyle and to the SON associated
with the parent style of that substyle. In this case, a query that is sent to both
SONs will search the node twice and thus it will find duplicate results.

6.2 Experiments

We will now consider two possible SON configurations and evaluate their per-
formance against a Gnutella-like system. As before, we used the crawl of 1800
Napster nodes made at the University of Washington, which were classified using

Semantic Overlay Networks for P2P Systems 11

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000

Messages

R
ec

al
l

SON (all queries)

Gnutella (all queries)

SON (substyle queries)

Gnutella (substyle queries)

Fig. 5. Average number of Messages for a Query Trace

the All Music database. We assumed that the nodes in the network (both inside
SONs and in the Gnutella network) were connected via an acyclic graph and
that on average each node was connected to four other nodes. Although the as-
sumption of an acyclic graph is not realistic, we are considering acyclic networks
as the effect of cycles is independent of the creation of SONs. Cycles affect a
P2P system by creating repeated messages containing queries that the receiving
nodes have already seen. Therefore, an analysis of an acyclic P2P network gives
us a lower estimate of the number of messages generated.

For this experiment we used 50 different random queries obtained from traces
of actual queries sent to an OpenNap server run at Stanford [17]. These queries
were classified by hand. Queries classified at the substyle level were sent sequen-
tially to the corresponding SON (or SONs), and then to the style-level SON.
Queries classified at the style level, were first sent sequentially to all substyles
of that style, and then to the style level. Queries classified at the root of the
hierarchy were sent to all nodes. We measure the level of recall averaged for all
50 queries versus the number of messages sent in the system. The graphs were
obtained by running 50 simulations over randomly generated network topologies.

In Figure 5, we show the result of this experiment. The figure shows the
number of messages sent versus the level of recall. Layered SONs were able to
obtain the same level of matches with significantly fewer messages than the
Gnutella-like system. However, Layered SONs do not achieve recall levels of
100% in general (average maximum recall was 93%) due to mistakes in the
classification of nodes.

The results of Figure 5 show the average performance for all query types
(dotted line). However, if a user is able to precisely classify his query, he will
get significantly better performance. To illustrate this point, Figure 5 also shows
with a dashed the number of messages sent versus the level of recall for queries
classified at the substyle level (the lowest level of the hierarchy). In this case, we
obtain a significant improvement versus Gnutella. For example, to obtain a recall

12 A. Crespo and H. Garcia-Molina

level of 50%, Layered SONs required only 461 messages, while Gnutella needed
1731 messages, a reduction of 375% in the number of messages. Moreover, even
at high recall levels, Layered SONs were able to reach a recall level of 92% with
about 1/5 of the messages that Gnutella required.

The shape of the curve for the message performance of Gnutella is slightly
different for all queries and for queries classified at the substyle level. The rea-
son for this difference is very subtle. The authors of this paper were only able
to classify very precisely (i.e. to the substyle level) queries for songs that are
very well known. Due to their popularity, there are many copies of these songs
throughout the network. Therefore, a Gnutella search approach will have a high
probability of finding a match in many of the nodes visited, making the flooding
of the network less of a problem than with more rare songs. Nevertheless, even
in this case, Layered SONs performed much better than Gnutella.

7 Conclusion

We studied how to improve the efficiency of a peer-to-peer system by clustering
nodes with similar content in Semantic Overlay Networks (SONs). We showed
how SONs can efficiently process queries while preserving a high degree of node
autonomy. We introduced Layered SONs, an approach that improves query per-
formance even more at a cost of a slight reduction in the maximum achievable
recall level. From our experiments we conclude that SONs offer significant im-
provements versus random overlay networks, while keeping costs low. We believe
that SONs, and in particular Layered SONs, can help improve the search per-
formance of current and future P2P systems where data is naturally clustered.

References
1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A

scalable peer-to-peer lookup service for internet applications. In: Proc. ACM SIG-
COMM. (2001)

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: ACM SIGCOMM. (2001)

3. Crespo, A., Garcia-Molina, H.: Semantic overlay networks for p2p systems. Tech-
nical report, Stanford University (2003) At http://dbpubs.stanford.edu/pub/2003-
75.

4. Kossman, D.: The state of the art in distributed queyr processing. ACM Computing
Survey (2000)

5. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.:
Oceanstore: An architecture for global-scale persistent storage. In: ASPLOS. (2000)

6. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Middleware. (2001)

7. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical report, U. C. Berkeley (2001)

8. Manning, C., Schutze, H.: Foundations of statistical natural language processing.
The MIT Press (1999)

Semantic Overlay Networks for P2P Systems 13

9. Sahami, M., Baldonado, S.Y.M.: Sonia: A service for organizing networked infor-
mation autonomously. In: Proceedings of the Third ACM Conference on Digital
Libraries. (1998)

10. Nejdl, W., Siberski, W., Wolpers, M., Schmitz, C.: (Routing and clustering in
schema-based super peer networks)

11. WWW: http://www.napster.com: (Napster)
12. WWW: http://opennap.sourceforge.net: (OpenNap)
13. R. Baeza-Yates, B.R.N.: Modern Information Retrieval. Addison Wesley (1999)
14. Rich, E., Knight, K.: Artificial Intelligence. McGraw-Hill Inc. (1991)
15. Witten, I., Frank, E.: Data Mining. Morgan Kaufmann Publishers (1999)
16. WWW: http://www.allmusic.com: (All Music Guide)
17. Yang, B., Garcia-Molina, H.: Comparing hybrid peer-to-peer systems. In: Pro-

ceedings of the Tweenty-first International Conference on Very Large Databases
(VLDB’01). (2001)

18. Korfhage, R.: Information storage and retrieval. Wiley Computer Publishing
(1997)

Unstructured Peer-to-Peer Networks:
Topological Properties and Search Performance

George H.L. Fletcher∗, Hardik A. Sheth∗∗, and Katy Börner∗∗∗

∗Computer Science Department
∗∗ School of Informatics

∗∗∗ School of Library and Information Science,
Indiana University, Bloomington, USA

{gefletch, hsheth, katy}@indiana.edu

Abstract. Performing efficient decentralized search is a fundamental
problem in Peer-to-Peer (P2P) systems. There has been a significant
amount of research recently on developing robust self-organizing P2P
topologies that support efficient search. In this paper we discuss four
structured and unstructured P2P models (CAN, Chord, PRU, and Hy-
pergrid) and three characteristic search algorithms (BFS, k-Random
Walk, and GAPS) for unstructured networks. We report on the results
of simulations of these networks and provide measurements of search
performance, focusing on search in unstructured networks. We find that
the proposed models produce small-world networks, and yet none ex-
hibit power-law degree distributions. Our simulations also suggest that
random graphs support decentralized search more effectively than the
proposed unstructured P2P models. We also find that on these topolo-
gies, the basic breadth-first search algorithm and its simple variants have
the lowest search cost.

1 Introduction

Peer-to-Peer (P2P) networks have sparked a great deal of interdisciplinary excite-
ment and research in recent years [17]. This work heralds a fruitful perspective on
P2P systems vis-á-vis open multi-agent-systems (MAS)1 [14]. A central issue for
both P2P networks and MAS is the problem of decentralized search; an effective
search facility that uses only local information is essential for their scalability
and, ultimately, their success. Initial work on this issue suggests that there is
a strong relationship between network topology and search algorithms; several
deployed P2P networks [3,10,11,18] and MAS [2] have been shown to exhibit

1 In an open MAS, agents do not have complete global knowledge of system member-
ship.

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 14–27, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Unstructured P2P Networks: Topological Properties and Search Performance 15

power-law degree distributions2 and small-world properties.3 In a small-world
network, there is a short path between any two nodes. This knowledge, however
does not give much leverage during search for paths in small-world systems be-
cause there are no local clues for making good choices. What is the best we can
do for decentralized search in a small-world? There has been little comparative
analysis of unstructured P2P models and search algorithms. Such validation and
comparison of models and algorithms is the first step in answering this question.

The approach we have taken to explore this issue is to model the network
topologies of two typical unstructured P2P models developed in the P2P com-
munity (PRU [19] and Hypergrid [21]) in simple graph-theoretic terms and build
simulations of these networks to measure topological properties and search per-
formance. As a comparison, we performed the same analyses on a random graph
[3,18] and two structured P2P models (CAN [20] and Chord [24]). We show
through these simulations that unstructured P2P networks have exactly the
properties and problems of small-world topologies; the networks have low diam-
eter but no means of directing search efficiently. Interestingly, these simulations
also show that none of the models considered generate power-law degree distribu-
tions. This turns out to be desirable in an engineered system; although power-law
networks support efficient decentralized search [1], they are fragile in the face
of attack [3] and can unfairly distribute network traffic during search [21]. The
reason for these weaknesses lies in the degree distribution; such networks have a
few nodes of very high degree that serve effectively as local “hubs.”

1.1 P2P Concepts and Related Work

There are two broad categories of P2P systems: hybrid and pure [17]. Hybrid
systems are characterized by some form of centralized control such as a name
look-up service [17] or a middle agent [8]. Pure systems strive for self-organization
and total decentralization of computation; these systems are the focus of the
work presented in this paper.

Pure P2P networks can be classified by the manner in which decentralization
is realized. In structured systems [20,24], placement of system resources at nodes
is strictly controlled and network evolution, consequently, incurs extra overhead.
Ideally, one would strive to minimize system constraints and costly datastruc-
tures when designing a P2P model. Unstructured systems are characterized by
a complete lack of constraints on resource distribution and minimal network
growth policies. These systems focus on growing a network with the desirable
low diameter of small world systems using only limited local information.

Early work on search methods for small world networks was done by Walsh
[27] and Kleinberg [13] and on decentralized search in scale-free networks by
2 The degree distribution of nodes in a graph follows a power-law if the probability

P (k) that a randomly chosen node has k edges is P (k) ∝ k−τ , for τ a constant skew
factor [3,18].

3 A small-world network is characterized by low diameter and high clustering co-
efficient, relative to a random graph of equivalent size [28]. We will define these
properties in full below.

16 G.H.L. Fletcher, H.A. Sheth, and K. Börner

Adamic et al. [1]. An early study of unstructured P2P network search perfor-
mance was done by Lv et al. [15], comparing search performance on generic
power-law, random, and Gnutella networks.4 More recently, several groups have
continued to study search performance with a focus on comparing power-law and
random topologies with deployed P2P systems such as Gnutella [5,25,29]. Initial
studies on search in open MAS have also focused on generic topologies [9,23].
Several projects have investigated the topological characteristics of the Internet
[10] and implementations of P2P filesharing networks [11]. What has been miss-
ing in all of this work is a general comparative study of proposed unstructured
P2P models, their topologies, and performance of search algorithms. This paper
is an initial step in filling this gap in our understanding of decentralized search
in unstructured P2P networks and open MAS.

2 P2P Models

In this section, we briefly introduce the P2P models under discussion. To facili-
tate comparison, we consider network topologies using a uniform graph-theoretic
framework. We view peers as nodes in an undirected graph of size M where edges
indicate connections between peers in the network. Each node N in the graph
has, as an attribute, a routing table TN = [e1 : w1, . . . , ek : wk] that associates
a weight wi to each edge ei (1 � i � k) incident on N . This represents the
connections of node N to k neighbors in the graph. Unless otherwise stated, all
weight values are equal in the graph.

2.1 Structured Models

As mentioned above, structured models enforce strict constraints on network evo-
lution and resource placement. These constraints limit network robustness and
node autonomy. Structured P2P models are good for building systems where
controlled resource placement is a high priority, such as distributed file storage.
However, they are not good models for systems with highly dynamic mem-
bership. The main advantage of these models is that the added constraints
result in sublinear search mechanisms; each of these models has an associ-
ated native search mechanism that takes advantage of the added structure
[20,24].

CAN. The Content Addressable Network (CAN), proposed by Ratnasamy
et al. [20], is a framework for structured P2P systems based on a virtual d-
dimensional Cartesian coordinate space on a d-torus. Nodes in a CAN graph
have as an attribute the coordinates of a subspace of this space that are used in
adding nodes and edges to the graph. Initially, the graph consists of one node
and no edges. This initial node is assigned the entire virtual space. As nodes
are added to the graph, they are assigned a subspace in the virtual space from
a uniform distribution. The system self-organizes to adjust to a new node by
4 http://www.gnutella.com

Unstructured P2P Networks: Topological Properties and Search Performance 17

Fig. 1. 32 Node CAN and Chord Networks

adding edges from the new node to adjacent nodes in the space. A visualization
of a 32 node CAN graph is given in Figure 1 on the left.5

Chord. Chord, proposed by Stoica et al. [24], is another self-organizing struc-
tured P2P system model. Nodes in a Chord graph have, as an additional at-
tribute, a coordinate in a 1−dimensional virtual space (called a ring). When a
new node N is added to the graph, the routing table attributes of the nodes
adjacent to N on the ring are used to add edges between N and k other nodes
distributed in the space. A visualization of a 32 node Chord graph is given in
Figure 1 on the right.

2.2 Unstructured Models

Unstructured models strive for complete decentralization of decision making and
computation. They require only local maintenance procedures and are topologi-
cally robust in the face of system evolution. These models are good for building
highly dynamic systems where anonymity and minimal administrative overhead
are prized.

Random Graph. We utilize the Erdös-Rényi random graph as a baseline model
for comparison with unstructured networks [3,18]. There is one parameter in
building a system with this topology: connection probability p. To build a ran-
dom network based on this model, the graph initially has no edges. Then for
each possible undirected edge between two distinct nodes in the graph, an edge
is added with probability p.

PRU. The PRU (Pandurangan-Raghavan-Upfal) model for unstructured sys-
tems, proposed by Pandurangan et al. [19], is based on a simple network growth
policy that ensures low graph diameter. In these graphs, nodes have a boolean
attribute inCache, indicating their role in network evolution. The model has as
parameters node degree K, minimum degree L, and maximum degree U . The
graph starts with K nodes with attribute inCache = True. Each of these nodes
has L edges incident on them from randomly chosen nodes within the group.
When a new node N is introduced into the graph its inCache value is False,
5 All graph visualizations in this paper were made with the Pajek package [6].

18 G.H.L. Fletcher, H.A. Sheth, and K. Börner

Fig. 2. 32 Node PRU and Hypergrid Networks

and edges are added between it and L randomly selected inCache nodes. If this
addition causes any inCache node NC to have more than U edges, NC has its
inCache value set to False, and a non-inCache node in the system is chosen
to become inCache [19]. A visualization of a 32 node PRU graph is given in
Figure 2 on the left with inCache nodes colored black.

Hypergrid. The Hypergrid model for P2P networks, proposed by Saffre and
Ghanea-Hercock [21], builds a graph topology that enforces low graph diameter
and bounded node degree. The graph grows as a simple k-ary tree with nodes
on the leaf level of the tree having their k − 1 free edges randomly connected
to other nodes on the same level in the tree that have degree less than k. A
visualization of a 32 node Hypergrid graph is given in Figure 2 on the right.

3 Unstructured P2P Search Algorithms

Search in a graph is defined as finding a path from a randomly chosen start
node Ns to a randomly chosen destination node Nd. The cost of a search is
the number of edges traversed in locating the destination node (i.e., the number
of “messages” sent between peers in the network during the search process).
There are two broad classes of search techniques for unstructured P2P graphs:
uninformed (blind) and informed (heuristic) [25]. Uninformed algorithms utilize
only local connectivity knowledge of the graph during search. Sometimes this
is the best we can do; without the ability to maintain some local state, search
can do little more than follow some systematic blind routine. If we can maintain
some local state, then search can proceed in a more intelligent manner. In addi-
tion to basic connectivity, informed algorithms use some localized knowledge of
the graph (such as “directional” metadata) to make heuristic decisions during
search. In this section we consider two characteristic uninformed search algo-
rithms, random Breadth-First-Search (BFS) [5,9,12] and k-random walk [1,15],
and a generic informed search algorithm, GAPS [26].

3.1 Random Breadth-First-Search

Random BFS [5,9,12] is an uninformed search algorithm that has been proposed
as an alternative to basic uninformed BFS (“flooding”). Basic BFS is a common

Unstructured P2P Networks: Topological Properties and Search Performance 19

technique for searching graphs. Search begins at Ns by checking each neighbor
for Nd. If this fails, each of these neighbors check their neighbors and this con-
tinues until Nd is found. The idea behind random BFS is to improve on the
flooding method to reduce message overhead during search. This is attempted
by randomly eliminating a fraction p of neighbors to check at each node. Search
then proceeds from Ns with ns neighboring nodes as follows: select �(1 − p)ns�
randomly chosen nodes adjacent to Ns, and return success if Nd is among them.
Otherwise each of these neighbors randomly selects a (1− p)-subset of its neigh-
bors. This process continues until Nd is located. If at any time during the search
a node N contacts a “dead-end” node (a leaf in the graph), the search process
backtracks to N and continues. It has recently been shown that there is an
optimal value for p in certain restricted power-law networks [5].

3.2 k-Random Walk

Random walk on a graph is a well known uninformed search technique [1,15].
In this approach, a reduction in message overhead is attempted by having a
single message routed through the network at random. Search proceeds from
Ns as follows: randomly select one neighbor N . If N �= Nd, then N similarly
contacts one of its neighboring nodes, avoiding re-selecting Ns (if N has only one
neighbor, it is forced to pass control back to Ns). This process continues until Nd

is located. This search mechanism does not generate as much message traffic as
the BFS algorithms since there is only one message being routed in the system.
The trade-off is that the search response time is significantly longer. k-random
walk extends this process to k random walkers that operate simultaneously with
the goal of reducing user-perceived response time [15].

3.3 Generic Adaptive Probabilistic Search

As mentioned above, uninformed search is the best we can do lacking some local
information. There have been several proposals to add “directional” metadata
to uninformed search [4,12,26,29]. We consider here a simplification of these pro-
posals which we call Generic Adaptive Probabilistic Search (GAPS), following
the adaptive probabilistic search algorithm of Tsoumakos and Roussopoulos [26].
GAPS can be viewed as a minimally informed approach to searching in an un-
structured system, making full use of the routing tables TN = [e1 : w1, . . . , ek :
wk] associated with each node N . The weight wi indicates the likelihood of suc-
cessful search through neighbor Ni based on previous search results. Initially,
wi = 1, ∀i.

Search proceeds from Ns as follows: choose a single edge ei from the routing
table with probability wi

Σk
j=1wj

, and return success if N = Nd is adjacent on this
edge. Otherwise, this neighbor selects one of its neighbors following the same
procedure. When the destination node Nd is located, all nodes along the path
from Ns to Nd (with loops removed) increment the weight in their neighbor
tables for their successor in the path by 1. In this way, these nodes will be
chosen with higher probability in future searches.

20 G.H.L. Fletcher, H.A. Sheth, and K. Börner

4 Simulation Results

To compare P2P network models in combination with search algorithms, we
implemented them in a uniform framework. We considered using existing agent-
based simulators [4,16], but decided that the level of implementation detail nec-
essary for a clean investigation of topology/algorithm interaction necessitated
a simple common framework. For each network of size M that we simulated,
we used the following parameter values, which were chosen to build graphs of
approximately equivalent edge count across all models:

– Random Graph: probability p = 2M logM
M(M−1)

– CAN: dimension d = 3
– Chord: edges k = log M
– PRU: inCache node count K = M

4 , lower bound L = log M, upper bound
U = 3L + 3

– Hypergrid: degree k = 2 logM + c, for constant c < 6.

Table 1. Statistics of Simulated Networks

Model # Nodes # Edges Avg. Degree
(min/max) Avg. Distance Diameter Clustering

Coefficient

Random 1024 10240 20.0
(7/34) 2.65 4 0.02

PRU 1024 10350 20.21
(10/34) 2.89 5 0.25

Hypergrid 1024 10239 20.0
(2/25) 3.71 5 0.124

CAN 1024 9524 18.60
(4/45) 4.85 10 0.50

Chord 1024 9728 19.0
(19/19) 3.45 5 0.16

4.1 Topological Properties

As briefly discussed in Section 1, P2P models and MAS are anticipated to grow
small world networks that also possibly have power-law degree distributions

5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

Degree

F
re

qu
en

cy

CAN
Random

5 10 15 20 25
0

20

40

60

80

100

120

140

160

Degree

F
re

qu
en

cy

Hypergrid

10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

Degree

F
re

qu
en

cy

PRU

Fig. 3. Degree frequency distributions for CAN and Random model (left), HyperGrid
model (center), and PRU model (right)

Unstructured P2P Networks: Topological Properties and Search Performance 21

[3,5,10,11,18]. The results of our simulating the models under consideration for
M = 1024 are presented in Table 1. We measured these values using the Ucinet
package [7]. Here, the average distance for a graph is the length of the shortest
path between two nodes averaged over all node-pairs in the graph. The diameter
of a graph is the length of the longest direct path in the graph between any
two nodes. The clustering coefficient of a graph is the proportion (averaged over
all nodes) of nodes adjacent to a particular node that are also adjacent to each
other [28]. The node degree frequencies for the models are plotted in Figure 3.

4.2 Search Performance

We now describe our experimental setup for measuring search performance. We
were interested in the actual number of edges traversed to find a node in the
system. The studies discussed in Section 1.1 have primarily considered the prob-
ability of successful search. We were looking at the cost of 100% success for each

0 100 200 300 400 500 600 700 800 900 1000

10
1

10
2

10
3

Network Size

C
os

t

CAN
Chord
Random

Fig. 4. Search performance comparison of structured models (CAN, Chord) using their
native search algorithms against an unstructured model (Random) using BFS

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

Network Size

C
os

t

p=0.0

Hypergrid
PRU
Random

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

p=0.75

Network Size

C
os

t

Hypergrid
PRU
Random

Fig. 5. Random BFS search performance across Hypergrid, PRU and Random models.
Cutoff probability = 0.0 (left) and 0.75 (right).

22 G.H.L. Fletcher, H.A. Sheth, and K. Börner

search (i.e., Time To Live, TTL = ∞). We measured search cost, on simulations
of network size 2n for 5 � n � 10, as the average of 5000 searches on each
size (specifically: 50 simulated networks, 100 searches on each, for all 6 network
sizes). For measurements of the GAPS algorithm, we “weighted” some fraction
P of nodes in the system more heavily (i.e., P% of the nodes are “popular”)
to be the destination for some fraction W of the searches. We skewed search in
this manner since the general efficacy of GAPS is dependent upon there being
popular nodes in the system that are the destination nodes for a higher than
average proportion of the searches. We also “primed” the network with 100 mes-
sages before measuring GAPS cost so that we could distinguish its behavior from
random walk. The results of our simulations are presented in Figures 4 – 9.

5 Discussion

As mentioned above, the defining characteristics of a small-world network are
low diameter and high clustering coefficient [28]. The values in Table 1 clearly
indicate that all of the models (except the random model) grow small-world
topologies. Chord, with a constant degree distribution, does not exhibit a power
law. None of the degree distributions plotted in Figure 3 follow power-laws:
CAN (left) follows a Poisson distribution (like the random graph) because it is
built by assigning nodes in the graph using a uniform hash function [20]. In the
case of Hypergrid graphs (center), the bulk of the nodes have maximum degree
while some linearly decreasing number of nodes at the leaf level fail to establish
maximum degree. PRU (right) has a highly skewed distribution: the “bump” at
degree 10 represents the lower bound L on degree, while the peak at degree 33
represents nodes that have reached the upper bound U on degree. There are a
nontrivial number of nodes with degree 34. These nodes were allowed to have
U + 1 neighbors to handle an error condition in the PRU growth protocol [19].
The few intermediate nodes with degree between L and U are those currently
inCache.

Turning to performance, Figure 4 illustrates the value of structure: the CAN
and Chord native search mechanisms give O(log M) search performance. The
cost of BFS on random graphs (typical of the unstructured models) increases
linearly with network size M, with cost roughly M/2. Clearly, the native search
mechanisms of structured networks outperform, by several orders of magnitude,
flooding search on unstructured networks.

Next, we compare the three search algorithms for unstructured networks. The
results for BFS with 0.0 and 0.75 cutoff values is given in Figure 5, for 1 and 16-
random walk in Figure 6, and for GAPS, with 5% of the nodes popular receiving
75% of search requests, in Figure 7 (left). Clearly, all variants of random BFS
have the same cost (indicating that randomness does not enhance basic BFS)
and have lower cost than both GAPS and k-Random Walk. Also, GAPS has
lower cost than the Random Walk search algorithm. The long term performance
improvement of GAPS algorithm for the Random Graph model is presented in
Figure 7 (right). Clearly this algorithm improves over time (albeit at a very

Unstructured P2P Networks: Topological Properties and Search Performance 23

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

Network Size

C
os

t

k=1

Hypergrid
PRU
Random

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

k=16

Network Size

C
os

t

Hypergrid
PRU
Random

Fig. 6. k-Random Walk search performance across Hypergrid, PRU and Random mod-
els. k = 1 (left) and 16 (right).

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200
weight=0.75, 5% popular

Network Size

C
os

t

Hypergrid
PRU
Random

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

150

200

250

300

350

400

450
weight=0.75, 5% popular, n=512

Number of Searches

C
os

t

Random
 linear

Fig. 7. GAPS (weight = 0.75, popularity = 5%) search performance (left). GAPS
search performance over time, Random graph (right).

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

1800

Number of Walkers

R
es

po
ns

e
T

im
e

k−Random Walk, n=1024

Hypergrid
PRU
Random

Fig. 8. k-Random Walk normalized cost (User Response Time = Cost/Number of
Walkers

24 G.H.L. Fletcher, H.A. Sheth, and K. Börner

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

Network Size

C
os

t
Random Graph

0.5 BFS
2−Random Walk
GAPS

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800
Hypergrid

Network Size

C
os

t

0.5 BFS
2−Random Walk
GAPS

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

Network Size

C
os

t

PRU

0.5 BFS
2−Random Walk
GAPS

Fig. 9. Performance of search algorithms (BFS, Random Walk and GAPS) across
random model (top left), Hypergrid (top right) and PRU model (bottom)

gradual rate). We also compare the user-perceived response time (that is, the
normalized cost of search) of all three P2P models for k-Random Walk (k =
1, 2, 4, 8, 16, 32) in Figure 8. Normalized cost improvement is equivalent across
all three models.

Finally, we independently consider search performance on each of the three
topologies. From Figure 9, it is evident that the random graph scales well for
all the search algorithms. Hypergrid has similar search cost as that of PRU
and Random graph for small size networks but as the network size increases,
its performance degrades. Random Walk involves the highest cost in all three
graphs, making GAPS a good alternative to k−random walk. Overall, these
experiments clearly indicate that the random graph model and BFS requires
lowest cost for unstructured networks.

6 P2P Models, Search Algorithms and Learning Modules

The P2P models and search algorithms discussed and compared in this paper
have recently been re-implemented in Java and integrated into the IVC Software
Framework in the InfoVis Cyberinfrastructure under development in the School
of Library and Information Science at Indiana University.6 The IVC Software
Framework enables non-programmer users to run diverse data mining, modeling
and visualization algorithms in a menu driven way.
6 http://iv.slis.indiana.edu/

Unstructured P2P Networks: Topological Properties and Search Performance 25

Fig. 10. Main application window of the IVC Software Framework

A snapshot of the interface to the IVC Software Framework is given in Fig-
ure 10. Continuous feedback on user requests and algorithmic results is printed
in the background of the main application window. Generated networks can
be analyzed using the Network Analysis Toolkit available under the ‘Toolkits’
menu or by running one of the diverse search algorithms under the ‘Analysis’
menu. Networks can be visualized using algorithms available under the ‘Visu-
alization’ menu. All algorithms in the IVC Software Framework are extensively
documented online. In addition, two Learning Modules are available online that
aim to educate about the Error and Attack Tolerance of Networks and about
the Search Performance of P2P Networks.

7 Conclusions and Future Work

In this paper we explored the topological properties and search performance of
structured and unstructured P2P models using simulations of the CAN, Chord,
Hypergrid, and PRU models and the random BFS, k-random walker, and GAPS
search algorithms. Our goal was to provide a basis for a better understanding
of the role of topology in search performance and to highlight the strengths and
weaknesses of these models and algorithms.

We discovered that most of these models do indeed grow as small worlds
with low diameter and high clustering coefficients. None of the models devel-
oped power-law degree distributions. We also found that basic BFS overall had
lowest search cost across all unstructured models and that the random graph
topology supports the lowest cost search overall using BFS. Furthermore, we
determined that random cutoff does not improve the cost of BFS. We also found
that increasing the number of walkers in random walk does not improve search
cost; in fact, this just trades network load for user perceived response time. Fi-
nally, we found that the GAPS algorithm performs well as an alternative to
k-random walk on all networks. These results indicates the need to study more
closely algorithms that intelligently adapt to system dynamism and usage.

The next step in this research is to undertake a complete formal investiga-
tion of the GAPS algorithm as a paradigmatic informed search algorithm. Its
generality and simplicity may give a good handle on designing efficient informed
search algorithms for small-world graphs that outperform BFS. Another impor-
tant step is to investigate unstructured topologies to specifically support GAPS.

26 G.H.L. Fletcher, H.A. Sheth, and K. Börner

Finally, an investigation of recent results which have applied percolation theory
to the problem of search in power-law graphs [5,22] can profitably be pursued in
our simulation framework.

Acknowledgments. We thank Beth Plale, Cathy Wyss, the reviewers, the Indiana
University Database Group, the AP2PC 2004 workshop participants, and Gopal
Pandurangan for their feedback and discussions on this paper. This work is
supported by a National Science Foundation CAREER Grant under IIS-0238261
to the third author.

References

1. Adamic, Lada, Rajan Lukose, Amit Puniyani, and Bernardo Huberman.
Search in Power-Law Networks. Physical Review E, 64(4):46135-46143, 2001.

2. Akavipat, Ruj, Le-Shin Wu and Filippo Menczer. Small World Peer Networks
in Distributed Web Search. Proc. ACM WWW2004, pp. 396-397, 2004.

3. Albert, Réka and Albert-László Barabási. Statistical Mechanics of Complex
Networks. Reviews of Modern Physics, 74(1):47-97, 2002.

4. Babaoğlu, Ö., H. Meling, and A. Montresor. Anthill: A Framework for the
Development of Agent-Based Peer-to-Peer Systems. Proc. IEEE ICDCS’02, pp. 15-
22, 2002.

5. Banaei-Kashani, Farnoush and Cyrus Shahabi. Criticality-based Analy-
sis and Design of Unstructured Peer-to-Peer Networks as “Complex Systems.”
Proc. IEEE/ACM CCGRID’03, pp. 351-358, 2003.

6. Batagelj, Vladimir and Andrej Mrvar. Pajek: Package for Large Network
Analysis. http://vlado.fmf.uni-lj.si/pub/networks/pajek/

7. Borgatti, S.P., M.G. Everett, and L.C. Freeman. Ucinet for Windows: Soft-
ware for Social Network Analysis. Harvard: Analytic Technologies, 2002.

8. Decker, K., K. Sycara, and M. Williamson. Middle-Agents for the Internet.
Proc. IJCAI97, pp. 578-583, 1997.

9. Dimakopoulos, Vassilios V. and Evaggelia Pitoura. A Peer-to-Peer Ap-
proach to Resource Discovery in Multi-Agent Systems. Proc. CIA 2003, Springer
LNCS 2782, pp. 62-77, 2003.

10. Faloutsos, M., P. Faloutsos, and C. Faloutsos. On Power-Law Relationships
of the Internet Topology. Proc. ACM SIGCOMM, pp. 251-262, 1999.

11. Jovanović, M., F. Annexstein, and K. Berman. Modeling Peer-to-Peer Net-
work Topologies Through “Small-World” Models and Power Laws. IX Telecommu-
nications Forum TELFOR 2001.

12. Kalogeraki, Vana, Dimitrios Gunopulos and D. Zeinalipour-Yazti. A Lo-
cal Search Mechanism for Peer-to-Peer Networks. Proc. ACM CIKM’02, pp. 300-
307, November 2002.

13. Kleinberg, Jon. Navigation in a Small World. Nature, 406:845, August 2000.
14. Koubarakis, Manolis. Multi-Agent Systems and Peer-to-Peer Computing: Meth-

ods, Systems and Challenges. Proc. CIA 2003, Springer LNCS 2782, pp. 46-61,
2003.

15. Lv, Qin et al. Search and Replication in Unstructured Peer-to-Peer Networks.
Proc. ACM ICS’02, pp. 84-95, 2002.

16. Minar, N., R. Burkhart, C. Langton, and M. Askenazi. The Swarm Simu-
lation System, A Toolkit for Building Multi-Agent Simulations. Technical Report,
Swarm Development Group, June 1996.

Unstructured P2P Networks: Topological Properties and Search Performance 27

17. Milojičić, Dejan S., et al. Peer-to-Peer Computing. HP Labs Technical Report
HPL-2002-57, 2002.

18. Newman, M.E.J. The Structure and Function of Complex Networks. SIAM Re-
view, 45(2):167-256, 2003.

19. Pandurangan, G., Prabhakar Raghavan, and Eli Upfal. Building Low-
Diameter Peer-to-Peer Networks. IEEE J. Select. Areas Commun., 21(6):995-1002,
August 2003.

20. Ratnasamy, Sylvia et al. A Scalable Content-Addressable Network. Proc. ACM
SIGCOMM, pp. 161-172, August 2001.

21. Saffre, Fabrice and Robert Ghanea-Hercock. Beyond Anarchy: Self Orga-
nized Topology for Peer-to-Peer Networks. Complexity, 9(2):49-53, 2003.

22. Sarshar, Nima, P. Oscar Boykin, and Vwani Roychowdhury. Percolation
Search in Power Law Networks: Making Unstructured Peer-to-Peer Networks Scal-
able. Proc. IEEE P2P2004, pp. 2-9, 2004.

23. Shehory, O. A Scalable Agent Location Mechanism. Proc. ATAL’99 Intelligent
Agents VI, pp. 162-172, 1999.

24. Stoica, Ion et al. Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet
Applications. IEEE/ACM Trans. on Networking, 11(1): 17-32, February 2003.

25. Tsoumakos, Dimitrios and Nick Roussopoulos. A Comparison of Peer-to-Peer
Search Methods. Proc. ACM WebDB 2003, pp. 61-66, 2003.

26. Tsoumakos, Dimitrios and Nick Roussopoulos. Adaptive Probabilistic Search
for Peer-to-Peer Networks. Proc. IEEE P2P2003, pp. 102-109, 2003.

27. Walsh, Toby. Search in a Small World. Proc. IJCAI99, pp. 1172-1177, July-
August 1999.

28. Watts, Duncan and Steven Strogatz. Collective Dynamics of ‘Small-World’
Networks. Nature, 393:440-442, June 1998.

29. Yang, Beverly and Hector Garcia-Molina. Improving Search in Peer-to-Peer
Networks. Proc. IEEE ICDCS’02, pp. 5-14, 2002.

Distributed Hash Queues:
Architecture and Design

Chad Yoshikawa1, Brent Chun2, and Amin Vahdat3

1 University of Cincinnati, Cincinnati OH 45221, USA
yoshikco@ececs.uc.edu

2 Intel Research Berkeley, Berkeley CA 94704
3 University of California, San Diego, La Jolla, CA 92093-0114

Abstract. We introduce a new distributed data structure, the Distr-
ibuted-Hash Queue, which enables communication between Network-
Address Translated (NATed) peers in a P2P network. DHQs are an
extension of distributed hash tables (DHTs) which allow for push and
pop operators vs. the traditional DHT put and get operators. We de-
scribe the architecture in detail and show how it can be used to build
a delay-tolerant network for use in P2P applications such as delayed-
messaging. We have developed an initial prototype implementation of
the DHQ which runs on PlanetLab using the Pastry key-based routing
protocol.

1 Introduction

Delay-Tolerant Networks (DTN) [1] are network overlays that enable communi-
cation even in the face of arbitrary delays or disconnections. This is accomplished
by using a store-and-forward mechanism which holds packets at interior nodes
until forwarding to the next hop in the route is possible. Unlike IP, there is no
assumption of an instantaneous source-to-destination routing path nor are there
limitations placed on latency or packet loss. In essence, arbitrary delays along
the routing path are tolerated by incorporating storage and retransmission in
the network itself.

DTNs are useful for enabling messaging over so-called challenged networks
[2] which have inherent network deficiencies that prohibit communication using
standard IP. Examples of challenged networks include satellite-based communi-
cation, sensor networks, and ad-hoc mobile networks.

Unfortunately, challenged networks need not be so exotic. Current trends
indicate that the Internet itself is becoming a challenged network. The threat
of computer virus infection has increased the proliferation and aggressiveness of
Internet firewalls. In addition, the dwindling supply of public IP addresses has
led to the popularity of NAT gateways which effectively hides machines behind
private IP addresses [3]. In both cases, bidirectional communication has been
severely constrained (by limiting port numbers) or eliminated altogether (in the
case of NAT-to-NAT communication). This restriction severely limits the ability
of P2P applications to make use of these NATed nodes. What we are left with is

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 28–39, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distributed Hash Queues: Architecture and Design 29

a challenged network where a growing population of private machines can only
communicate (unidirectionally) with public machines.

In this paper we present a solution to this problem - the distributed hash
queue (DHQ). The DHQ provides durable network storage that can be used
to facilitate communication between disconnected peers. A sending host places
network packets into the DHQ and a receiving host subsequently pulls packets
from the DHQ. All queues are named using 160-bit keys and a queue lookup
(naming) service has been built on top of the Pastry key-based routing protocol.
The DHQ prototype runs on top of the PlanetLab network testbed and the
initial implementation consists of approximately 2500 lines of Java code.

2 Simplified DTN Architecture

As defined by [2] and [4], a general delay-tolerant network provides several dif-
ferent classes of service and delivery options. These include Bulk, Normal, and
Expedited service and Return Receipt and Secure delivery options, among oth-
ers. In addition, a DTN provides multi-hop routing across several regions using
name tuples.

In this paper, we provide an implementation of a simplified DTN architecture
than can be extended to the general case. Our architecture consists of a single
Reliable class of messaging service and we use 160-bit hash keys for names.
Delivery options are not provided by default, however, they can be added at
the application level if desired. Routing is limited to single-hop paths, from a
NATed network node to another NATed network node. Multi-hop paths can be
built by inserting application-specific route headers into message contents but
that is beyond the scope of this paper.

To summarize, then, the DTN that we describe in this paper has the following
basic properties:

2-Region Connectivity. Messages can be routed between two disconnected
network regions, i.e. two NATed nodes.

160-Bit Names. Message queues are named by 160-bit keys.

Reliable Delivery Option. All message are reliably delivered in the face of
up to K network faults. The constant K is a configurable parameter but is set
to 3 by default.

3 Background

The DHQ system makes extensive use of the Pastry key-based routing (KBR)
protocol. Pastry is used to implement the DHQ name service and to help in
replicating queue state. While Pastry is used for the implementation, any KBR
protocol would be sufficient. In this section, we give a brief background of the
Pastry system. For a complete description, see Rowstron, et. al [5].

In the most basic sense, Pastry maps 160-bit keys to IP addresses. Thus,
given any 160-bit key, Pastry will return the closest IP address to that key. This

30 C. Yoshikawa, B. Chun, and A. Vahdat

provides the basis for the DHQ name service, since we need to map queue names
(160-bit keys) to the host that owns the queue state.

In the Pastry system, the 160-bit key space is configured in a ring (from 0
to 2160 − 1) and the nodes are distributed along the ring. All nodes are assigned
a node ID which consists of a 160-bit key and a IP address. Using a consistent
hashing algorithm (e.g. SHA1), the IP address is deterministically hashed to
a key. In addition to being deterministic, the hashing algorithm also generally
provides a uniform distribution of keys. So the nodes are roughly distributed in
the 160-bit key space in a uniform manner.

An important feature of Pastry (and of other KBRs) is that the average route
path from any node to the owner of an ID is log(N) in the number of nodes in
the system. In Pastry, in fact, the average route path is logb(N) where the base
is 16. So the system can potentially scale to a large number of peers.

4 Distributed Hash Queues

The Distributed Hash Queue (DHQ) system provides a queuing service to both
public and private peers on the Internet. At the highest level of abstraction,
senders push messages to named queues and receivers pop messages from named
queues. A request-reply messaging service can be built on top of the queuing
service by using the tag field in the queue element structure to match requests
with replies.

Senders and receivers are assumed to be applications running on NATed
network nodes, e.g. a pair of instant-messaging applications. The DHQ service
consists of N nodes running on the PlanetLab which are publicly addressable
(i.e. have public IP addresses) and participate in a single Pastry ring (group of
cooperating nodes). See Figure 1.

The DHQ system consists of three services: a reliable naming service, a gate-
way service (for accepting requests from NATed nodes), and the core reliable
queuing service. See Figure 2 which shows the layered structure of the DHQ
system.

4.1 Reliable Naming Service

All queue methods operate on named queues and must use the naming service
in order to locate the queue owners. The naming service provides a mapping
from queue names (160-bit keys) to a set of K locations which replicate the
queue state for redundancy. In addition, in order to prevent the naming service
itself from becoming a single point of failure in the system, names are replicated
across K nodes for fault-tolerance (In practice, K is chosen to be 3). The name-
to-queue-owners binding is replicated by making use of the Pastry replica-set
feature which finds the K closest nodes to a particular ID. A queue name is first
converted to a Pastry key key, and then the Pastry system is used to locate the
K node handles which may contain the name binding.

For example, consider a lookup of the queue named “request”. First, the name
“request” is converted into a Pastry key requestkey which begins with the hex

Fig. 1. This figure shows the logical structure of the DHQ service. Two communicating
NATed nodes, A and B, connect to the DHQ service via the closest respective gateway
node. Once connected, the NATed nodes can issue queue commands, e.g. push and
pop.

digits 0x338A.... A request message for a list of name replicas (LookupReplicas)
is then sent to the Pastry node with ID closest to the key 0x338A.... This closest
node responds with a list of K replica node IDs. A name lookup is then attempted
in parallel to each of these replicas, and the first valid response is returned to
the caller. (A similar mechanism is used by the PAST storage system [6].) See
Figure 3 which shows the operations involved.

4.2 Gateway Service

In the DHQ system, the NATed peer nodes do not participate in the Pastry
ring, i.e. they do not own a part of the Pastry ID space. This is by design
since NATed nodes are assumed to be highly dynamic and would introduce
a high churn rate [7] into the system which would decrease stability. Instead,
NATed nodes communicate to the Pastry ring nodes using a Gateway Protocol
over standard TCP/IP. Commands are sent as human-readable single-line ASCII
strings in order to ease parsing and debugging. In addition, this simple protocol
makes the process of creating DHQ clients much simpler. The only requirement
for a DHQ client is that it must support TCP/IP and be capable of sending
ASCII strings. In fact, during the debugging process, a telnet client was used
to connect to the ring and issue push and pop commands. The list of gateway
commands is described below.

Alive queue name lists the nodes which contain a live copy of queue name.
This list decreases monotonically as nodes fail until the queue is fixed using
the Fix command (see below).

BlockingPop queue name blocks until the queue has at least one element then
returns that element.

32 C. Yoshikawa, B. Chun, and A. Vahdat

Pastry

Naming Service

DHQ Service

Gateway Service

NAT Node B

Pastry

Naming Service

DHQ Service

Gateway Service

NAT Node A

Fig. 2. This figure shows the layered structure of the DHQ system. The arrows indicate
communication between layers and between entities. The DHQ and Naming services
are implemented as Pastry applications and communicate strictly through Pastry. The
NAT nodes connect to the DHQ service via the Gateway service which listens for
TCP/IP connections.

Create queue name (IPaddress1, IPaddress2, etc.) creates a queue named
queue name on the machines represented in the IP address list. In the case
that no list is given, the current gateway node and its neighbors are used to
replicate the queue.

Delete queue name deletes a queue from the system. This removes the name
queue name from the naming service so that the queues are effectively
deleted.

Fix queue name ensures that the queue name queue name is K-replicated and
the queue state is K-replicated. For each queue, a Fix command is issued
periodically by the system (every 2 minutes) in order to maintain the repli-
cation factor of each queue. x

Range This returns the ID space that the gateway node is responsible for. This
is used for debugging purposes and to map out the distribution of the ID
space to each node.

NameAlive queue name returns the set of nodes that are replicating the name
binding for queue name. This set is not usually the same returned by the
Alive command.

Peek queue name returns the first element from the queue queue name with-
out removing it.

Pop queue name removes and returns the first element from the queue.
Push queue name “value” pushes an element onto the queue queue name

consisting of the string “value”.
QueueInfo queue name used for debugging. Return a string representation of

the queue size and contents.
Where queue name return the list of queue replicas. This is a superset of the

nodes returned by the Alive command.

Distributed Hash Queues: Architecture and Design 33

X.35

X.20

X.21

X.82

X.4X.19

X.34

X.5

X.225

2.
R
et

ur
n

Thr
ee

R
ep

lic
as

1.
Lo

ok
up

R
ep

lic
as

X.35

X.20

X.21

X.82

X.4X.19

X.34

X.5

X.225

3.
Per

fo
rm

Lo
ok

up
O

pe
ra

tio
n

Fig. 3. This figure shows the steps taken during a lookup operation on the Reliable
Naming Service. First, a set of replicas is fetched from the node closest to the name
key. Then, a lookup request is multicast to these nodes and the first valid response is
used.

NATed nodes attach to Gateway nodes by using a bootstrap process that
is as follows. First, a NATed node contacts a seed node that it obtained via
some out-of-band process. Then, the NAT node executes the nearby-node al-
gorithm from [8] in order to find the closest Gateway node. In our experience,
the nearby-node algorithm tended to be biased toward returning the seed node
and an improved algorithm based on Vivaldi [9] network coordinates is currently
underway.

Once the closest node is found, the NATed node opens up a socket connection
to the gateway over a well-known port number. Once connected to the Gateway
Service, the NAT node issues commands (one per line) and receives any responses
(e.g. to pop messages) over the network stream. If a connection is lost, the
Gateway can restart the bootstrap process to find a better node or try to connect
directly to the Gateway again. Gateway commands are translated directly into
queue operations which are then handled by the Reliable Queue Service.

4.3 Reliable Queue Service

Queues are implemented as priority queues where the message timestamps de-
note priority. This provides a total ordering on messages given synchronized
global clocks. Given weaker time synchronization, however, the priority queues
still serve a purpose: they provide a consistent ordering of packets in replicated
queues. Therefore, if messages are replicated across a set of K queues, the pri-
ority feature ensures that messages will be seen by queue readers in the same
order regardless of which queue is accessed.

The set of queue operations that are supported includes the set of Gateway
commands plus some additional commands. Only the additional commands are
listed below:

34 C. Yoshikawa, B. Chun, and A. Vahdat

CreateQueueReplica queue name queue state This message is sent, along
with serialized queue state, to a node in order to manually replicate a queue.

GetQueueState queue name This command is used to fetch the entire state
of a queue from a remote node.

PingQueue queue name Determine if a queue exists.
WatchQueue queue name This message is scheduled periodically using the

Pastry schedule − message primitive. A WatchQueue message, when re-
ceived by the QueueService, will automatically fix a queue and maintain
the invariant that the queue and its name binding has K replicas.

Push and pop operations are multicast to all of the K queue owners in order
to attempt to preserve queue consistency. For a push operation, we chose not to
use a synchronous two-phase commit protocol such as ABCAST [10], but rather
we use a best-effort send which attempts to send the message to all live queues.
While this does not guarantee consistency, with a large enough value of K it
does probabilistically guarantee that the message will not get dropped.

In order to preserve the queue state over long delays, it is important that the
queues be able to survive many faults. For example, in a delay-tolerant network,
days or even weeks may go by before a message can successfully be delivered.
Therefore, the DHQ needs to durably store messages so that they can survive
multiple faults. This is handled by the initial queue replication, and a periodic
process which re-replicates queue state every S seconds. In practice, we have
used a value of S to be 120 seconds, although this value is tunable and should
be set according to the environment in which the DHQ is operating. In this
initial implementation, the faults that we are trying to survive are mainly the
periodic reboots of PlanetLab nodes. Currently, we are assuming fail-stop nodes
which simplifies the implementation. Future work will be to survive other kinds
of failures and to improve the consistency guarantees of the system.

5 Results

In this section, we describe the overhead and scalable performance of DHQ. In
order to benchmark the system, we have built an application called DynamicWeb
on top of DHQ. Among other things, the DynamicWeb system enables private
NATed computers to serve web documents via a public queue living in the DHQ.
(Note that for these performance tests, we have turned off the queue replication
and reliable name services, i.e. we are testing the bare-bones DHQ performance.)

During traditional web browsing, a client initiates an HTTP REQUEST
which is satisfied with an HTTP RESPONSE by the server (see Figure 4). In
the DynamicWeb system, however, web browsers and web servers are indirected
through the DHQ, see Figure 5. HTTP requests become DHQ push operations,
and the resulting HTTP response is popped by the browser. (HTTP Requests are
matched with the corresponding HTTP Responses by an auto-generated unique
identifier.)

The first question to answer is, “How much does this indirection cost?”, in
other words how much overhead does the DHQ system introduce. In the indirect

36 C. Yoshikawa, B. Chun, and A. Vahdat

DHQ Overhead: Dynamic Web

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Message Size (bytes)

T
im

e
(m

s)

Overhead

Direct Time

Fig. 6. This figure shows the overhead of a DynamicWeb request vs. a traditional web
request, with varying request file sizes

servers. The goal of the experiment is to determine how throughput scales as
more DHQ nodes are added to handle this constant load of web traffic. In or-
der to negate any effect of load-imbalance, we have assigned DHQ nodes to the
clients/servers in a round-robin manner at runtime. The results of 120 seconds
of this test are shown in Figure 7.

We can see that throughput increases as more DHQ nodes are added to the
system, most noticeably the two cases when 8 and 15 DHQ nodes are present.
For the latter case, the throughput of the system reaches a peak of 131 requests
per second. (The downward slope on this line is caused by the fact that clients
are finishing their work of 1000 requests and there is not enough load on the
system to sustain the peak throughput.)

We also notice that the system is not perfectly scalable. This is the re-
sult of two competing forces present: processing power and network latency.
As more DHQ nodes are added, the aggregate processing power of the sys-
tem increases which enables more web requests to be handled. However, as the
system grows larger, network latency also increases. This increase in network
latency is due to the pseudo-random placement of DHQ queues in the Pastry
ring. When there is only one DHQ node, obviously all queue state is on that
single node. Queue access time, therefore, is of the order of memory access time
in this case. However, as the DHQ system grows larger, the probability that
queue state is colocated with queue access decreases. Queue access time is now
on the order of network latency, which is significantly larger than memory access
latency. This effect causes the path lengths in Figure 5 to increase which causes
the system throughput to decrease (since the requests are synchronous). In the
future, we plan on investigating methods to decrease queue access latency, in-
cluding smarter placement of queue state (e.g. locating queue state with queue
access).

Distributed Hash Queues: Architecture and Design 37

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120

A
gg

re
ga

te
 T

hr
ou

gh
pu

t

Seconds

Scalable Throughput

1 DHQ
2 DHQ
4 DHQ
8 DHQ

15 DHQ

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120

A
gg

re
ga

te
 T

hr
ou

gh
pu

t

Seconds

Scalable Throughput

1 DHQ
2 DHQ
4 DHQ
8 DHQ

15 DHQ

Fig. 7. This figure shows the aggregate throughput (requests/second) given varying
sizes of the DHQ system

6 Related Work

In this paper, we have described a mechanism for allowing communication to
a NATed network node with a private IP address. Some related work in this
area has attempted to tackle this very problem including AVES [11] and i3
[12]. In AVES, the NAT gateway (and DNS server for performance reasons)
is modified in order to support incoming connections to private IP hosts. A
public network waypoint address serves as the virtualization of the private IP
address, and relays IP packets from a public IP address to the private IP address
through the modified AVES NAT gateway. The main constraint on the AVES
solution is that it requires gateway software modifications which may not be
administratively possible by all NATed clients. In addition, while AVES does
provide general bi-directional communication from host-to-host, it still makes
the assumptions of low RTT and packet loss and therefore is not a candidate for
building a complete delay-tolerant network (DTN).

The Internet Indirection Infrastructure (i3) is another possible choice as a
substrate for building a DTN. In i3, packets are sent not to an IP address but
rather to a rendezvous node identified by an m-bit key, called k. An overlay
network (Chord is used in the i3 implementation) then routes data packets to
the node associated by successor(k) in the Chord system. Any interested parties
can register triggers with the rendezvous node (again, using the key k to identify

38 C. Yoshikawa, B. Chun, and A. Vahdat

the rendezvous node). The triggers then forward packets to the interested nodes.
What i3 provides through this indirect communication is the ability for recipients
to be mobile. For example, if a host moves from address 128.A.B.C to 128.X.Y.Z,
then it simply must refresh its trigger to point to its new IP address. A recipient’s
mobility, however, is still limited to the public Internet since triggers forward
packets using IP. In addition, i3 does not provide network storage for packets
as is required by a DTN - packets are simply forwarded by a trigger as soon as
they arrive. If the destination host is currently unavailable, then the packet is
lost and must be retransmitted by the source node. In a DTN, it is the network
that provides network storage and/or retransmission before failing.

The POST system [13] provides secure and reliable messaging between dis-
connected hosts. Like DHQ, POST is built on top of key-based routing protocol
and provides message storage in the network. The main differences between the
two systems is the fact that the POST system design assumes bidirectional com-
munication between hosts (it is a P2P messaging system) and is focused on
secure messaging. While end-to-end security can be added on top of DHQ at the
application layer, it is not a focus of this paper.

The IP Next Layer (IPNL) system [14] provides connectivity to NATed hosts
by extending IP addresses to be a triple of a public IP address, realm ID, and
private IP address. Other network communication remains the same, so that the
IPNL does not handle the long storage delays that are inherent to DTNs. Also,
while IPNL provides a general purpose NAT-to-NAT communication mechanism,
it does so by modifying the IP layer and therefore requires router modifications.

7 Conclusion

In this paper we have described the architecture and design decisions involved in
building a distributed-hash queue (DHQ) service. The primary reason for build-
ing such a service is to provide rendezvous communication for private NATed
peers in a P2P system. The requirements of any such service is to provide a set of
public waypoints and data durability. In our system, we use the PlanetLab test-
bed to provide public waypoints. To survive faults and provide long-lived data
durability we have chosen to replicate both the queue names and the queue state.
The API of our distributed hash queue service has been described in detail and
performance measurements illustrating the scalability of the system have been
given. Our planned future work includes lowering the overhead of the system
and analyzing its resilience to faults.

References

1. Fall, K.: Delay-tolerant networks. In: Proceedings of ACM SIGCOMM 2003,
Karlsruhe, Germany (2003)

2. Fall, K.: A delay-tolerant network architecture for challenged internets. Technical
Report IRB-TR-03-003, Intel Research (2003)

3. hua Chu, Y., Ganjam, A., Ng, T.E., Rao, S.G., Sripanidkulchai, K., Zhan, J.,
Zhang, H.: Early experience with an internet broadcast system based on overlay
multicast. Technical Report CMU-CS-03-214, CMU (2003)

Distributed Hash Queues: Architecture and Design 39

4. Cerf, V.G., Burleigh, S.C., Durst, R.C., Fall, D.K.: Delay-Tolerant Network Ar-
chitecture. http://www.ietf.org/internet-drafts/draft-irtf-dtnrg-arch-02.txt (2004)

5. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware). (2001) 329–350

6. Rowstron, A., Druschel, P.: Storage management and caching in past, a large-
scale, persistent peer-to-peer storage utility. In: Proceedings of the eighteenth
ACM symposium on Operating systems principles, ACM Press (2001) 188–201

7. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a dht. Technical
Report CSD-03-1299, UCB (2003)

8. Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Exploiting network proximity
in distributed hash tables. In Babaoglu, O., Birman, K., Marzullo, K., eds.: In-
ternational Workshop on Future Directions in Distributed Computing (FuDiCo).
(2002) 52–55

9. Cox, R., Dabek, F., Kaashoek, F., Li, J., Morris, R.: Practical, distributed network
coordinates. In: Proceedings of the Second Workshop on Hot Topics in Networks
(HotNets-II), Cambridge, Massachusetts, ACM SIGCOMM (2003)

10. Glade, B., Birman, K., Cooper, R., van Renesse, R.: Lightweight process groups
in the isis system (1993)

11. Ng, T.S.E., Stoica, I., Zhang, H.: A waypoint service approach to connect het-
erogeneous internet address spaces. In: Proceedings of the General Track: 2002
USENIX Annual Technical Conference, USENIX Association (2001) 319–332

12. Stoica, I., Adkins, D., Zhuang, S., Shenker, S., Surana, S.: Internet indirection
infrastructure. In: Proceedings of ACM SIGCOMM Conference (SIGCOMM ’02).
(2002)

13. Mislove, A., Post, A., Reis, C., Willmann, P., Druschel, P., Wallach, D.S., Bon-
naire, X., Sens, P., Busca, J.M., , Arantes-Bezerra, L.: Post: A secure, resilient, co-
operative messaging system. http://www.cs.rice.edu/CS/Systems/PAST/POST-
IPTPS.pdf (2004)

14. Ramakrishna, P.F.: Ipnl: A nat-extended internet architecture. In: Proceedings of
the 2001 conference on Applications, technologies, architectures, and protocols for
computer communications, ACM Press (2001) 69–80

DiST: A Scalable, Efficient P2P Lookup Protocol

Savitha Krishnamoorthy, Karthikeyan Vaidyanathan, and Mario Lauria

Department of Computer Science and Engineering,
The Ohio State University

{savitha, vaidyana, lauria}@cis.ohio-state.edu

Abstract. A well-known problem found in peer-to-peer systems is how to effi-
ciently and scalably locate the peer that stores a particular data item. In a typical
formulation of the problem solution, each data item is mapped to a key; every
peer stores data items corresponding to a contiguous range of keys, and locat-
ing an item requires identifying the host that holds that item’s key. Here we de-
scribe Distributed Search Tree (DiST), a distributed lookup protocol based on a
straightforward extension of the search tree concept. In DiST peers are assigned
to groups, each group is responsible for a range of keys, and groups are located at
the nodes of logical search tree. While our approach has comparable complexity
to the best algorithms proposed so far (complexity is O(logN)), we show that its
flexible design puts it at an advantage when it comes to the application of com-
mon performance enhancing techniques such as caching and replication. As an
example of such advantage we describe the improvement in data lookup time and
resilience obtained with key caching and table lookup replication.

Keywords: Peer to Peer computing, DHT.

1 Introduction

P2P (Peer-to-peer) systems tend to be highly decentralized. They typically consist of
many nodes, which are symmetric in function, but unreliable and heterogeneous. The
increasing popularity of peer-to-peer file sharing systems has paved a way to many
interesting research problems.

The problem of finding data is at the heart of any decentralized P2P system [2][5]
[11]. It is not addressed well by most popular systems currently in use, and it provides
a good example of how the challenges of designing P2P systems can be addressed. The
recent algorithms developed by several research groups for the lookup problem, like
a central database or the DNS approach have inherent reliability, resilience and load
balancing problems.

One of the challenges in a peer-to-peer network is to find the data item in a large P2P
network, in a scalable manner. In this paper we present an abstract architecture, DiST
with a scalable and flexible protocol for lookup in a dynamic peer-to-peer system. DiST
is a distributed lookup protocol based on a straightforward extension of the search tree
concept. It uses a hierarchical model with a group of peers acting as a single node of
a tree. The parent of a peer belongs in the parent group. In DiST peers are assigned
to groups, each group is responsible for a range of keys, and groups are located at the
nodes of logical search tree. The protocol requires data items to be mapped to keys

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 40–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

DiST: A Scalable, Efficient P2P Lookup Protocol 41

within a given range. Our lookup protocol can locate the group responsible for a data
key in O(logN/M) time where N is the size of the network and M is the constant
maximum members allowed in a group. This is essentially O(logN). However we show
that integration of caching data along the search path, in our protocol can achieve 100%
hit rates with cache sizes as small as the number of groups in the network. This is due
to the fact that specific range of keys lie within a single group and caching any one key
in this range implicitly acts as a cache for every key in this range. Hence, even a small
cache is shown to achieve significant performance improvement.

The protocol takes care of distributing keys among the nodes (groups) of the tree in
a balanced manner. This ensures that no group in the hierarchy is overloaded. Although
data is uniquely present with a single group, it may be replicated among peers within
the group for load balancing.

Our architecture requires every member to hold information about M other mem-
bers. With small group sizes (M), the storage cost reduces significantly at the cost of
increasing the load on each member of the system. DiST also has an efficient dupli-
cation mechanism by which frequently accessed keys are duplicated among members
of the group. A data request may be forwarded to any of the members among whom
the data is duplicated. This is more efficient since each group is only responsible for a
subset of the entire range of keys.

The flexibility of DiST can be further exploited by plugging any other P2P lookup
protocol within each group thus improving their scalability. For instance, if Chord [13]
is used as the lookup protocol within the group, with M = logNmax where Nmax is the
maximum peers one can expect in a network, then our protocol can perform the lookup
within O(log(N/logNmax)) + O(log(logNmax)).

The rest of the paper is organized as follows. Section II describes related work.
Section III describes our architecture in detail. Section IV describes our simulation
methodology and Section V discusses various results obtained.

2 Background and Motivation

Several protocols have been introduced before to provide look-up facilities for data in
a Peer to Peer network. In Napster [7] architecture, clients connect to a central server
that maintains the list of clients and their shared resources. It keeps track of online
clients and maintains a central file index. The server becomes a single point of fail-
ure and introduces scalability issues. The centralization defies the vital requirement of
decentralization in a P2P network.

Another popular protocol is that of Gnutella [6] [9] in which, a client broadcasts its
request to its nearest neighbor after consulting its routing table. The request is broad-
casted along the network for a certain allowed number of hops (Time To Live for the
request). Data is not published or advertised. So queries are forwarded until they find a
node that can serve the request. As the number of peers increase, the traffic required to
messaging increases exponentially due to the flooding nature of the lookup.

Fast Track [3], came up with a tree structure; nodes with fast computing power and
network bandwidth act as super nodes and take a server role. Clients join these super
nodes and sends request to the super nodes. This architecture gives more importance to

42 S. Krishnamoorthy, K. Vaidyanathan, and M. Lauria

some nodes over the others, which affects its resilience. As the network size increases,
the amount of overhead on these super nodes increases. The main disadvantage of such
hierarchical architectures is that removal of nodes higher in the hierarchy leads to chaos.

Recently a number of look up algorithms have evolved, [13,8,10,4], which use the
Distributed Hash Table (DHT) approach. Chord [13] uses a DHT abstraction that forms
an ordered logical ring structure. It offers the capability to perform a lookup in O(logN)
hops. A single node maintains information about O(logN) other nodes. However Chord
and other similar protocols like Tapestry, Pastry [10] and Yappers [4] do not provide for
arbitrariness in queries. The effectiveness of caching and replication in such architec-
tures is not significant since a data key always maps to a unique network node.

These algorithms are effective in different ways. Many of the DHT based algorithms
cannot see much benefit due to caching as data items or keys map to unique nodes. How-
ever the characteristics of requests indicate popularity of documents and hence caching
and replication mechanisms can significantly impact the performance of the network. In
this paper, we design a novel architecture that takes advantage of the efficiency of Dis-
tributed Hash Tables while providing flexibility that can make good use of caching and
replication mechanisms. Our architecture also introduces subsystems or overlays within
the network, which can make use of other key look up algorithms without disrupting
the working or performance of the rest of the network.

3 Terms and Terminologies

Group: Every member in the network belongs to a group and a data lookup typically
follows a hierarchy. Though a member belongs to a group, no member (peer) is impor-
tant than any other member in the network and peers can join any group. The members
joining a group are initially treated as buffers to replace any of the leaving members at
higher levels of the tree. The group is stabilized only after the size of the group reaches
a certain threshold value.

Key: Every data item available in the network is mapped to a key value using a popular
hash function. Each group, a set of peers, in the network is responsible for a range of
keys, a finite space (bounds which are determined by its parent group). Fig 1 shows an
example of a key distribution among a set of groups in the network.

We refer to a group of peers that act as a node in a distributed search tree as a group
and each peer within a single group as a member. In this paper, groups and nodes
are used interchangeably. Groups may also be referred to as an individual peer in the
network and will be indicated as a network node. The total number of peers in the
network at any point is referred to as the size of the network.

4 DiST Architecture

In this section, we describe the design of a flexible architecture for a Peer-to-Peer sys-
tem. We also enhance the basic protocol with several optimizations such as caching
keys for efficient data lookup, data replication for data availability, using history in-
formation for efficient join and leave operations and exploiting features of other P2P

DiST: A Scalable, Efficient P2P Lookup Protocol 43

Table 1. Algorithm for Member Join

Formation of Search Trees:

Step 1: Node contacts a nearest neighbor with a join request
Step 2: The peer receiving the request, checks if the new node has any keys lying within the range
of keys that its group is responsible for
Step 3: If it has and if the group size is less than the high watermark, then the new member joins
the group and all the peers in the group and at least one member of the root group is informed.
This step ensures that in scenarios where members join and leave the network, no time is spent
on looking for the best group for the member
Step 4.1: Else, the join request is forwarded along the hierarchy to the root group, which decides
the best group X, where the new peer can belong to, in such a way as to balance the tree
Step 4.2: If the best group is the root, it is directly added to the group and informed about other
groups in the network
Step 4.3: Else, the root finds a group (say X) to which the new member should belong to and then
forwards the request down the hierarchy to group X
Step 4.4: When the request reaches the peer in the parent group of X, it adds the new member as
its child before forwarding the request to X
Step 5: All members of the group X are then informed of the new members arrival and data-key
pairs and key responsibilities are exchanged.

lookup protocols owing to the flexibility of our architecture. We assume a symmetric,
bi-directional, and transitive routing in the network in our architecture.

4.1 Design Overview

The underlying structure of the DiST protocol is a distributed search tree, with a group
of peers acting together as a node of the tree. The root group of the tree holds informa-
tion about the number of groups in the tree and the number of members in each group.
This information is used to decide the potential group to which a new member joining
the network should belong. The hierarchy in the tree is established by a parent-child
relationship between a peer of the parent node and one or more peers in the child nodes.
Currently, the architecture has been evaluated for binary search trees but can be gen-
eralized for other n-ary trees as well. For the purpose of inter-group communication,
every member of the system holds the IP addresses of its parent, from the parent group
and children from the child groups. The parent-child relationships are established while
processing member join requests. DiST is fully distributed; no peer is more important
than any other peer; Since the group to which a peer belongs to is not static, members
may leave a group at any time.

DiST requires little information for join and leave operations and also for data
lookup requests. In an N-sized network if the size of the group is M then DiST is seen
to resolve lookups in O(logN) and join requests require O(logN) for communication.
Each peer stores information aboutM other peers in the network.

4.2 Design Details

In this section we describe the join and leave operations which consequently build and
shrink the tree respectively. We also describe our hashing, group management and key
distribution mechanisms in more detail.

44 S. Krishnamoorthy, K. Vaidyanathan, and M. Lauria

4.2.1 Tree Formation: Join Operation
Table 1 shows the steps involved in processing a single join request. A join request may
be made to any peer in the network. The tree structure of the network is abstract and
only used for routing purposes. New members joining the network hold certain key-data
pairs and need to be informed of their group identity.

For example, say network node Y receives a join request from network node X.
If X holds data-keys that Y’s group is responsible for and the group can accommo-
date a member, X’s request is processed and X joins Y’s group and consequently some
member of the root is informed of the addition. This step is helpful when the same node
joins and leaves the network frequently. Also, with high probability it will join the same
group and its data structures need not be updated as often. If the data-keys of X dont
match with Y’s range of keys or X does not have any data, Y simply forwards the join
request to its parent recursively until the request reaches the root. Any member of the
root may service this request. The root allots a group whose size is less than M to the
new member and informs the allotted group of the addition. If no such group is found
the root creates a new group in a balanced manner and informs the new member of the
group. Any new group in the network acts only as a floating nodes until a certain mini-
mum group size is reached. As floating members, they may be used to fill deficiencies
in other groups and for load balancing purposes. This is an O(logN) operation.

4.2.2 Leave Operation
Before a peer leaves the network, it can notify other members of the group, though this
is not neccessary in the proposed architecture. The architecture ensures good resilience
in the event of a peer going down or leaving without prior notification. This is because
the data is duplicated among many members in a group. Also there are buffer nodes at
any instant to make up for bursty leaves. Whenever a group size falls below a minimum
threshold, the child merges with the parent and the tree shrinks. The peer leave infor-
mation is updated lazily, only when a miss occurs for a data lookup request. This takes
care of unstable peers that may be subsequently re-joining the system.

4.2.3 Hashing and Group Mapping
Data items being looked up are mapped to keys. A base hash function such as SHA-1
[1] assigns each data item a value that is referred to as the key or data key. These keys
are assumed to be well distributed over the entire domain of values that can be hashed.
This property is necessary to balance the load in the network so that servicing lookups
is not skewed towards any particular group.

Fig 1 shows a representative distribution of keys among groups for keys ranging
from 0 to 1000 with 90% delegation of keys to child groups. This fixed percentage
delegation is used in mapping the data key being searched for to the group holding the
data item.

4.2.4 Group Management
Group management in DiST is required during member join operations, wherein every
member of a group is informed about a new member and key assignment. When process-
ing join requests every member of the group is informed about the new member. This

DiST: A Scalable, Efficient P2P Lookup Protocol 45

Table 2. Algorithm for Key Lookup

Lookup for a Data-Key in a peer-to-peer network

Step 1: Peer generates a lookup request
Step 2: If data is available within the group, then the lookup returns success and ideally O (1)
cost if key is within group range then service the client
Step 3: Else, the data is forwarded to the parent, or one of the children
if key is within subtree range then

if key ¡ group range then
forward request to left child

else
forward request to right child

end if
else

forward request to parent
end if

Step 4: The data request is forwarded until the request reaches the responsible group. This
operation takes O(logN)

Node range: 249 − 449 Node range: 551 − 752
Sub−tree range: 551 − 752

Group 7

Group 3

Group 1

Group 2

Group 4 Group 5 Group 6

Sub−tree range: 249 − 449

Sub−tree range: 0 − 449
Node range: 203 − 248

Node range: 0 − 202
Sub−tree range: 0 − 202 Sub−tree range: 799 − 1000

Node range: 799 − 1000

Node range: 753 − 798
Sub−tree range: 551 − 1000

Sub−tree range: 0 − 1000
Node range: 450 − 550

Fig. 1. Tree formation by the groups and their key responsibilities

operation requires communication with M other members, where M is the maximum
number of peers that can belong to a group and a constant of the system.

When a new group or node is formed, the parent node assigns a fraction of its data
servicing responsibility to members of its newly formed child-node. The assignment of
key responsibility to a child group requires communication with as many as M members
of the child group, where each member of the child group is updated with the range of
keys that the group is responsible for. As new groups form, the load on the parent nodes
reduces, since its data servicing responsibility is reduced. However this increases the

46 S. Krishnamoorthy, K. Vaidyanathan, and M. Lauria

load in terms of request forwarding. Assignments do not occur frequently and hence
this overhead incurs on a one-time basis.

4.2.5 Fault Tolerance
Key responsibilities are assigned to a group only after the group size reaches a minimum
threshold value. Until a group is assigned keys, its members are treated as buffer peers.
This concept of having some buffer peers provides additional fault tolerance to manage
bursty leaves.

4.2.6 Data-Key Management and Lookup Mechanism
In order to search for a particular data-key in DiST, the key needs to be distributed and
also be published in the network.

Key Distribution: Every data item available in the network is mapped to a key value
using a popular hash function. Each group in the network is responsible for a range
of keys, whose bounds are determined by its parent group. DiST distributes the keys
along a balanced binary tree structure. Peers belonging to groups higher up in the tree,
are assigned a lower fraction of keys or data items to service in order to balance out
their forwarding responsibilities. The cost of data lookup grows logarithmically as the
number of groups (depth of the tree). This scales well with large network sizes. Every
member of a group is consequently notified about joins and leaves in a group. This
information helps group members to monitor its size. If needed, they can take members
from the child groups in order to maintain the availability of the group and also balance
the load. Fig 1 shows an example of a key distribution among a set of groups in the
network.

Key Publishing: When a new data item is to be stored at a peer, the group that has
the key in its range is looked up. The least loaded peer in the destination group is then
chosen and the data item to be stored is sent. The chosen peer adds the data item-key
pair to its hash table and also updates all the peers in the group about the new key. The
peer can also set an expiry time for the key, publisher’s recommended expiry length for
deletion of keys.

Data-Key Lookup: When a peer generates a data request, the data item is mapped to the
corresponding data key value using the hashing scheme described above. Any peer of
any node may receive the request. The processing of this request is described in table 2.

The member first checks if the key requested is available within its group. If it is,
then look up is resolved and this corresponds to the path length of 0 in the graph shown
in Fig 1. Within the group a lookup may be resolved in constant time (M being constant
of the network/application using DiST). Otherwise a simple mapping algorithm (Fig 2)
determines which in the hierarchy the request is to be forwarded. This may be regarded
as a Distributed Hash Tree (DHT) abstraction where keys are automatically mapped to
a group in the tree structure. For example in Fig 1 if group 2 gets request for a key 800,
it decides to forward the request to its parent since the key does not fall in the sub-tree
range. The parent peer then forwards the request to its right child and so on. However
if the key happens to be within the range and no peer in the group has that key, DiST
ensures that the request is aborted.

DiST: A Scalable, Efficient P2P Lookup Protocol 47

4.3 Performance Enhancement Schemes

Replication: To ensure keys remain available in the network even after the peer re-
sponsible for storing that key has failed, DiST replicates the stored keys to other peers
inside a group. DiST replicates a data-key based on its key frequency, which indicates
the popularity of that data item. In DiST, a particular data item gets replicated ran-
domnly among the peers in a group. Once the data-item is replicated, it is informed to
all the peers inside the group. A lookup for that key is forwarded randomly to one of
the replicated peers. Also, after a series of key lookup requests for this data-item, this
knowledge (replication) is disseminated among other groups with the help of caching,
which is explained later in this section. In this paper, we have used replication and
duplication interchangeably.

Metadata: To make searching effective, resources can be published on the network
based on their metadata values (for e.g. it can be the frequency of key access). Data-
items which are popular can be broadcasted in the network so that other peers in the
network. On every key lookup request each peer can use this information and cache the
results (metadata) and improve the lookup time for such popular requests.

Caching: We introduced a small cache in each member of the network to hold the key
range to peer id (IP address) mapping once a lookup is resolved. A member would first
consult its cache before forwarding the lookup along the tree. On a key lookup request,
it first checks its cache to see whether the given key falls in the range of keys that are in
the cache or close to the range of keys we are searching for. If it does, then we forward
the request directly to the mapped peer. Otherwise we take the usual path along the
tree. The cache holds highly distributed keys so that lookup for keys that are outside the
group range can quickly reach the correct group or a nearest group, thus reducing the
path length significantly.

Caching in DIST can be more effective than in any of the recent protocols [12] such
as Chord. A cache in Chord would have to hold every new key that was looked up
and serviced. This would require a bigger cache since a small cache that is frequently
updated would be ineffective. However, DiST architecture caches only a subset of keys,
which are well distributed, since and this would help to get closer to the group holding
the key, even if the exact key is not cached. For example, if a key to be searched falls
close to another key that was already searched, then the peer forwards that request to
the corresponding member, which served that request earlier, instead of following the
hierarchy. This takes advantage of the fact that a specific range of keys lies with a single
group and caching any one key in this range implicitly acts as a cache for every key in
this range. Caching also helps in decreasing the load on the peers that are in the top level.

For cache replacement, if a key request falls in the same range (maximum range
of keys that the group holds) of a previously cached key then the peer that served this
request its response replaces the old key-peer pair entry. This ensures that the cached
key has the most current information. If the key request does not lie in the range of
any of the cached keys then the peer serving the request replaces the least recently used
key-peer pair. This ensures that the keys in cache are well distributed and also ensures
that the popular keys are always in the cache. Figure 2 shows how caching strategy is
applied in our architecture.

48 S. Krishnamoorthy, K. Vaidyanathan, and M. Lauria

Lookups are performed in O(logN) in the worst case, where N is the number of
peers in the network and is shown to improve significantly with the introduction of a
cache (Fig 5). If we assume that the entries of the cache are well distributed to hold a
key from every group, then the key lookup moves through the hierarchy in steps of C,
where C is the cache size in each member. This brings the lookup time to the order of
O(log(N/(C))). It is clear that when C = N/M , the group size, the lookup reaches
the correct group in constant time, since M is a constant of the system.

As mentioned above, we need to cache only one key for every group since the
responsibility of a range of keys is associated with a group and caching any one key
in this range implicitly acts as a cache for every key in this range. This is analogous
to memory caches where when a data item is accessed the a whole line containing it is
loaded in the cache.

In this network, (N/M) is the number of groups and let C be the available cache
size in each peer. The hit rate of the cache (likelihood of finding a lookup item in
the cache) can be expressed as C/(N/M). Now the miss rate would simple be (1 −
C/(N/M)). Only the cache misses would incur a cost of (logN) in a data lookup and
constant time otherwise. The average path length of data lookup can be expressed as

Average Path Length = C/(N/M) + (1 − C/(N/M))*logN

Note that this expression translates into a constant lookup time when cache size is
equal to the number of groups in the network. This is an interesting result, however
the utilization of the cache still depends on the exact sequence of the keys requested
and cache replacement policy. We have shown in the next section that the average path
length is much less than O(logN) with random key request patterns using the caching
mechanism.

Also the average path length can be further reduced owing to the fact that a single
cached key can be used to make an intelligent guess in lookup forwarding. For example,
even if the requested key does not lie in the range of cached keys, the parent or child
group of the cached keys could be the group responsible for the requested key. This can
significantly reduce the path length.

Our simulation results (Fig 5) show that this optimal lookup time is achieved with a
cache size (C) much less than the group size (N/M) for small group sizes. When groups
organize themselves as a k-ary tree structure and as the network grows, we find that a
key lookup would just take O(logkN) where k is the arity of the tree.

5 Simulation

In this section, we evaluate the DiST protocol by simulation. The simulation uses MPI
to simulate the groups with each MPI program acting as a node of the tree. We represent
these groups in a virtual group by allotting them group ids (MPI rank) and keeping
track of the load on the group collectively. This is for statistics purposes only and such
collective information is never maintained by the actual architecture. Our system builds
a binary tree. However it can be extended to any k-ary tree. The parent and child ids
of a group are established using K-ary balanced tree properties. For example, a group
with id 5 in a binary tree would have groups 10 and 11 as its children and group 2 as
its parent. The simulation has two main events: Join Event and Data Lookup Event.

DiST: A Scalable, Efficient P2P Lookup Protocol 49

PeeridKey

PeeridKey

PeeridKey

PeeridKey

PeeridKey

Key = 875

Response

Request = 875

Request = 875
Response

Request = 875
Response

Request = 875
Response

Request Key = 900
Response

Sub−tree range: 799 − 1000
Node range: 799 − 1000

Sub−tree range: 0 − 202
Node range: 0 − 202

Cache

Request Key = 875

Cache

Cache

Cache

Cache

Node range: 450 − 550
Sub−tree range: 0 − 1000

Fig. 2. Caching in DiST

Join event generates the peers using (Poisson, exponential, random) distributions with
an inter arrival rate of 20ms and randomly assigns data keys to peers before joining
the network. It assumes that the keys are within a fixed range (from 0 to 10000). The
data lookup event generates lookup requests concurrently with join event. Members
randomly add a new lookup packet to the network at a constant high rate of 10 requests
/ sec. At the end of the simulation we calculate the following statistics: total lookup
packets serviced and forwarded; packet search time (number of hops); average network
load in a group; average load/peer in a group.

A specialized scheduler process in the simulator continuously generates new mem-
ber join events by randomly contacting members of the network with join requests.
Members then handle the join request as described in Fig 1. Members are simulated as
data structures in every MPI program. Each member has keys that it is responsible for
and information about other members in its group and its child and parent ids (IP ad-
dress). The simulator maintains the keys as data structure containing information about
its data value, members holding the key and frequency of request for the key. A key is
duplicated when the frequency of key access reaches a threshold.

The simulator uses a threshold for the maximum members (70) that a group can
have. It also has a threshold for the minimum members in a group before it is assigned
key responsibility by its parent. Until this minimum number is reached, these members
act as the floating nodes mentioned above.

Initially every member is added to the root group, until the threshold number of
members for a group is reached. Till this point, the root services all keys but the number
of members requesting data is also low. When more members come in, new groups
are formed and the key load is distributed. Though a group can decide how much its
children’s share can be, in our simulation, we have used 90% as the share that will be
transferred equally to all its children.

We simulated a small cache with size ranging from 5% to 20% of the total number
of groups in the network. The cache is always maintained such that the keys present are
well distributed and the key information is most current.

50 S. Krishnamoorthy, K. Vaidyanathan, and M. Lauria

Effect of number of Groups on Load in this architecture

0

5

10

15

20

25

Group 1 Group 2 Group 3

K
ey

s
p

er
 M

em
b

er

PARENT INIT

PARENT FULL

LEFT

RIGHT

0

5

10

15

20

25

30

Size =10 Size = 30 Size = 50 Size = 70

Group Size

Jo
in

 L
at

en
cy

(m
s)

C/S Ratio 0.25 C/S Ratio 0.5 C/S Ratio 1 C/S Ratio 2

Fig. 3. (a) Effect of number of Groups on Load in this architecture (b) Join Latency with varying
group sizes for differen communication to servicing (C/S) ratios

6 Results

Arrival (join) of peers to the network is simulated by a scheduler process that contacts
the nearest neighbor on behalf of the joining peer.

Fig 3a shows the decrease in load as more groups are created in the network. The
load is balanced out, as the number of groups becomes 3. The root forms a balanced
tree and keys are distributed to make the child groups responsible for a range of keys.
When the child groups inherit responsibility of the keys from the parent, the load on the
parent further reduces as shown by the figure. The load of servicing requests within a
group significantly reduces as the number of peers allowed in a group and the number
of groups itself increases.

Fig 3b simulates a 210 sized network and evaluates the best, average and worst join
latency for every 100th peer joining the network for different group sizes of 10, 30,
50 and 70. The latency was evaluated for different network communication to servicing
cost ratios (C/S ration) of 0.25, 0.5, 1 and 2. The network communication was measured
as the path length of forwarded join requests. The servicing cost was measured as the
time taken for members within a group to update their data structure on every new
member join operation.

The graphs show a clear trend towards small group sizes for faster networks and
large group sizes for slower networks. This is because small group sizes lead to deeper
trees and hence require more forwarding. The data structure updating is much smaller
with small group sizes. However as group sizes increase, the depth of the tree decreases
for a network of the same size thus decreasing the forwarding cost and increasing the
inter-group communication and update of information about the new member.

For a particular C/S ratio, the latency is seen to have an optimal value of group size,
below which forwarding cost dominates and servicing cost dominates above it.

The parent assigns a fraction of its keys to the child groups. Fig 4a shows the perfor-
mance of different fractions of key assignment from the parent, under varying network
conditions. For network communication to network node servicing time ratios varying
from 0.01 to 2, the graph shows the average lookup time for key requests with varying
share of keys from the parent group. Communication was measured as the number of
times a request was forwarded along the hierarchy and node-servicing load as the num-
ber of requests that were served by a group member. 60% delegation of keys showed bad

DiST: A Scalable, Efficient P2P Lookup Protocol 51

0.15

0.25

0.35

0.45

0.55

0.65

0.25 0.5 1 2
Communication to service cost ratio

A
ve

ra
g

e
L

o
ad

 p
er

 G
ro

u
p

 in
 u

n
it

 t
im

e

90% Share

80% Share

70% Share

0%

5%

10%

15%

20%

25%

30%

35%

0 1 2 3 4 5 6 7 8 9 10 11
Path Length

%
 lo

o
ku

p

Cache Size 0% Cache Size 5%
Cache Size 10% Cache Size 15%

Fig. 4. (a) Effect of increase in forwarding cost on lookup time with varying parent-child share in
a 210 network (b) Lookup performance improvement with varying cache sizes

Fig. 5. Percentage of requests serviced by each group in an 8-group network

performance for all ratios. Further, we see that 80-90% delegation gives good perfor-
mance in faster networks and 70-80% for slower networks. This is because with lower
delegation the forwarding cost increases which dominates a slower network. The sim-
ulator currently assumes a 0.1 ratio and a static share delegation of 90% for all traces.
But this can be made adaptive according to the communication to service cost ratio of
the network.

Simulation results shown in Fig 5 for a 210 node network, shows the average load
on each group in terms of CPU cycles consumed during a lookup. For every forwarded
request the cycles consumed were assumed to be one-tenth the cycles for servicing a
request. This resulted in a balanced network of peers and justifies our claim to assign a
large fraction of keys from the parent to every child group.

Figure 4b shows the total distribution of path lengths within which lookup requests
were resolved. The performance improvement with cache sizes 0%, 5%, 10% and 15%
was obtained. As in Chord [13], we define path length as the number of nodes traversed
before reaching the node holding the data. When the simulator was run with 210 network
nodes and lookup requests totaling around 22000, with a maximum of 30 members per
group, Fig 4b shows that the peak occurs as expected at O(log(N/M)) where N/M is
the number of groups, around 70 in this run. Though an O(1) lookup is expected when

52 S. Krishnamoorthy, K. Vaidyanathan, and M. Lauria

C = G (70) we achieve it at C = 15 itself because of the effectiveness of caching as
explained in the previous section.

For the same statistics, but with a small cache of five key-IP address pairs integrated
into each member, a significant improvement is seen. This is justified because our strat-
egy for cache management allows for widely distributed values of keys to be present in
cache. A key in cache is useful for all key requests that lie within a range of keys around
a cached key. The data points were obtained by running the simulator until we reached
22000 requests in the network.

7 Limitations

DiST assumes that due to its properties like buffering and group management the prob-
ability of an entire group leaving is a rarity. However such events can also be handled
gracefully. The architecture can maintain a set of buffered members which can be added
in the event of a complete group leaving.

8 Conclusion and Future Work

We have proposed DiST ian architecture for peer-to-peer networks with a protocol for
data lookup. The architecture is based on a tree structure with a set of peers forming the
node of the tree. We have described the join and lookup operations in detail and shown
that these operations have a complexity of O(logN) in the worst case without caching
mechanisms where N is network size. For a k-ary case, DiST takes care of organizing
the groups into a balanced k-ary tree. Each peer requires to store information only about
the other peers in its group.

With caching, however the lookup operation is seen to give significant performance
enhancements since caching any one key implicitly acts as a cache for every key in
that group. We have also shown the effect of key duplication. The flexibility of the
architecture allows for any protocol to be used for the lookup within a group. Hence
caching, duplication and flexibility are the key features of this protocol. We believe that
DiST is a practical lookup structure and will be a valuable component for peer-to-peer,
large scale-distributed applications.

Our simulation assumes that group leaving is a rare event. However such events
also need to be handled gracefully. Also, in DiST, active members tend to have a more
updated cache than less active ones. To have uniform cache updates, caches can be
integrated with timestamp information so that during node leaves and joins members
can exchange caches. This will help less active members to replace stale cache entries
with more recent information. In the protocol presented, there has been no attempt
to address the issue of reliability to provide security, but it can be easily extended to
incorporate such functionalities.

Acknowledgments

The authors would like to thank Dr. Anil Shende for his encouragement and motiva-
tion for this project. The authors also like to thank Dr. D.K. Panda for his help and

DiST: A Scalable, Efficient P2P Lookup Protocol 53

support. The authors are grateful to Ms. Nagavijayalakshmi Vydyanathan, Mr. Shankar
Subramanian, Mr. Radhakrishnan Sundaresan, Mr. Prashant Nikam for their guidance.

References

1. FIPS 180-1. Secure hash standard. U.S. Department of Commerce/NIST, National Technical
Information Service, Springfield, VA, Apr. 1995.

2. Hari Balakrishnan and et al. Looking up data in p2p systems. In Communications of the
ACM, February 2003/Vol.46, No.2.

3. FastTrack. Peer-to-peer technology company. In Website http://www.fasttrack.nu/, 2001.
4. Prasanna Ganesan, Qixiang Sun, and Hector Garcia-Molina. Yappers: A peer-to-peer lookup

service over arbitrary topology. In Stanford University.
5. David Liben-Nowell and et al. Analysis of the evolution of peer-to-peer systems.
6. Evangelos P. Markatos. Tracing a large-scale peer-to-peer system: An hour in the life of

gnutella. In Tech Report 298.
7. Napster. http://www.napster.com.
8. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable

content addressable network. In Proceedings of ACM SIGCOMM 2001, 2001.
9. Matei Ripeanu and Ian Foster. Mapping the gnutella network: Macroscopic properties of

large-scale peer-to-peer systems.
10. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and

routing for large-scale peer-to-peer systems. In Microsoft Research.
11. Mario Schlosser and Sepandar D. Kamvar. Modeling interactions in a p2p network. In

Stanford University.
12. Tyron Stading, Petros Maniatis, and Mary Baker. Peer-to-peer caching schemes to address

flash crowds. In Stanford University.
13. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup protocol for internet applications. Proceedings of ACM SIGCOMM,
San Diego, August 2001, pp. 160177.

A Policy for Electing Super-Nodes in
Unstructured P2P Networks

Georgios Pitsilis1, Panayiotis Periorellis2, and Lindsay Marshall

University of Newcastle upon Tyne, U.K.
{Georgios.Pitsilis, Panayiotis.Periorellis,

Lindsay.Marshall}@ncl.ac.uk

Abstract. Unstructured P2P networks, despite having good character-
istics such as the nonexistence of a single point of failure, the high levels
of anonymity in the search operations and the exemplary dependability,
have been found to be much less scalable than first expected. The flood-
ing protocol, which is used for the discovery of peers and for the main
operation of searching, seems to be responsible for this weakness. The
adoption of some major improvements, such as the distinction between
Leaf-nodes and Ultra-Peers, has partially overcome the scalability prob-
lems, but there is still a need for further optimization. Our proposed idea,
aims to improve the effectiveness of the hierarchical scheme by applying
some new criteria in the selection of potentially promotable nodes.

1 Introduction

Gnutella is one of the most popular decentralized peer-to-peer networks. Scal-
ability limitations have driven its development to a new two-level organization.
The new organization has its own vulnerabilities due to its dependency on the
co-operation between a relatively small number of high-level peers. Researchers
that have applied models of population dynamics to peer-to-peer systems [1],
mention the loss of confidence in users as the only weak point of this type of
networking since there are no central entities that could be forced to close down.
In our work we use graph theory and statistical analysis to determine whether
topologically important nodes have the potential for becoming Ultra-peers. We
assess topological importance using connectivity measures derived from graph
theory. We have assumed that potential Ultra-peers are peers that have to deal
with large numbers of messages. This paper tries to establish whether there
is a link between topologically important peers and the amount of traffic they
handle. In our work we have used 2 connectivity measures: Outer Degree and
Elementary Cycle, both of which we explain later. The objective is to identify
topologically important nodes and see whether they can be suggested as the
most appropriate ones, for promotion to the higher level of hierarchy, based on

1 Scholar of Greek State Scholarships Foundation (IKY).
2 Supported by the GOLD project.

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 54–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Policy for Electing Super-Nodes in Unstructured P2P Networks 55

the traffic they generate. The rest of the paper is organized as follows: In section
2 there is a description of the problem and the solutions adopted so far, section
3 is dedicated to our solution, section 4 contains some simulation experiments
and 5 the analysis of the results. Section 6 discusses the applicability of the
algorithm.

2 Description of the Problem

The Gnutella protocol has a relatively simple specification [2]. The basic node
discovery resource searching mechanism has its basis on a simple flooding mech-
anism. Messages are sent first to neighbors and upon their reception they are
propagated again to their known neighbors, and so on, until the TTL (Time-To-
Live) [3,4] value expires. It has been shown that nearly two thirds of the commu-
nication within the network is generated by the Ping and Pong messages. This
creates a huge traffic overhead. These limitations caused by the flooding proto-
col itself, created the known scalability barrier of the Gnutella network, where
every peer is restricted to see a certain number of other peers, which forms its
horizon. Studies that are based on simulations [5] show that P2P actually scales
much better than conventional theory would indicate. Thus, exponential growth
of the messaging load should not be assumed. Even though we have no reason
to disagree with these findings, we think that the scalability limitations always
exist and radical solutions have to be deployed to shift the scalability barrier.

2.1 Some Proposed Solutions to the Congestion Problem

There have been many suggestions regarding the overhead produced by the huge
number of ping messages flowing through the network. Massey [4] suggests that
the maximum connectivity of a peer in the network should be restricted by
the peer’s bandwidth connection to the network. Other proposed solutions to
the problem such as [6] are based on the idea of building and maintaining the
good topological characteristics of the network. Other relevant papers such as [7]
address the scaling problems via an optimized routing mechanism. The concept
of Ultra-peers (or super-nodes) and the consequent separation of Gnutella in 2
layers is adopted by protocol version v0.6 [8]. Issues of reliability and efficiency
were researched in [18].

2.2 Potential Weaknesses of the Existing Ultra-Peer Election
Algorithm

As we stated in the previous paragraph, the employment of Ultra-peers in the
Gnutella network helps the network to scale and extend its life beyond the limits
that were first thought possible [9]. Allocation may be done on a voluntary basis
and needs no centralized control to work but we believe there is further room
for improvement. Ultra-peers and Ultra-peer candidates are usually unable to
know the connectivity characteristics of their position in the network. Our aim

56 G. Pitsilis, P. Periorellis, and L. Marshall

with the experiments and case studies presented in this paper is to assist in
building two-level networks of better connectivity characteristics by providing
some rationale behind Ultra-peer election.

3 Motivation

The motivation is to identify better election policies for Ultra-peers. We believe
that peers that deal with a large number of messages should be considered as
potential Ultra-peers. The question that we raise is ’how can the busiest peers
be identified in a dynamic network such as Gnutella ?’. The solution we propose
is to graph the peers together based on the messages they receive and use the
graph to carry out certain statistical analyses. As we show, our analysis can
identify those busy nodes without the need for physically count any messages.
We use two connectivity measures; namely the outer degree and the elemen-
tary cycle value [10] to determine important nodes based on those connectivity
measures. Then we compare the highly connected peers against their message
queues in order to determine if there is a link between topologically important
peers and traffic. We finally show from the case studies that peers selected as
highly connected in terms of elementary cycle value are also likely to attract a
lot of traffic. We acknowledge that a high connectivity factor doesn’t necessarily
mean a privileged position within the graph. This is because the connectivity
factor that is given to a node when it is created is more or less a static property
that is not affected by the general position of the node in the graph.

3.1 The Connectivity Measures - Terminology

Before we examine the results of the case studies let us define the two basic
connectivity measures that we use.
Outer degree: This is a connectivity measure. The Outer Degree of node i indi-
cates how many nodes are connected to i. Let aij be the adjacency matrix where
aij = 1 if i is connected to j and aij = 0 if i is not connected to j. Let n be the
total number of nodes. The Outer Degree is estimated by

OuterDegreei =
∑n

j=i Aij (1)

Elementary cycle [14] is a measure of the participation of all nodes of a net-
work in certain structures such as triangle or cycle formation. One of the struc-
tures we considered is the elementary (minimal) cycle structure; the triangle. A
cycle is a sequence of vertices of the form Ci = (xi0 , xi1), (xi1 , xi2), . . . , (xir−1 , xir)
where xi0 = xir (i.e. the initial vertex of the path is also the terminal vertex of
the path). The path is elementary (simple), if it does not transverse any node
more than once.

3.2 Our Approach

Many papers [10,11,12] have acknowledged the fact that Gnutella does not scale
well. We find this partially true or at best dependent on the connectivity measure

A Policy for Electing Super-Nodes in Unstructured P2P Networks 57

selected. The majority of the work mentioned earlier is based on the Outer
degree. Other connectivity measures however have revealed a scale-free topology.
Our approach is based on the hypothesis that certain connectivity values (e.g.
elementary cycle) of any sub-graph of Gnutella reveal a scale-free topology (i.e.
uneven distribution of connectedness) [13,16,17]. Later in the paper we show
through our case studies that the top peers in terms of elementary cycle value
are in fact the busiest in terms of traffic they handle. Our comparative analysis
against current selection policy (which is based on Outer degree) has revealed
that our method has a higher chance of spotting a potential Ultra-peer (based
on how much traffic it handles) as opposed to how connected in terms of Outer
Degree it is.

3.3 Simulation

For our case studies we assumed several 100 node networks. To show the correct-
ness of our hypothesis we ran a total of 10 simulations of Gnutella communities
which were randomly developed. All simulation scenarios were set up in such a
way that the connectivity factors allocated to the nodes would follow power law
distribution with exponent -1.4 [17]. Each node was given a unique ID number
and we let the simulation to run for about 5000 virtual clock ticks. A clock tick
should be seen as the interval of virtual time that is needed for an elementary
processing task to be carried out on a message. We use that notion in our ex-
periments to simulate the variation in connection speeds that can be found in a
real situation and drive to congestion. For the simulation we used a tool that we
built in Java for the purpose of our experiments and can emulate the Gnutella
protocol version 0.4. The configuration we used in the simulation were set to the
following values as we tried to make the simulations as realistic as possible:

– Ping Frequency: 1 ping send out every 30 units of virtual time.
– Probability of using info received from pongs: 50%
– Probability of ping forwarding: 60%
– Time To Live factor in the message forwarding: 5
– Connectivity: Follows Power law distribution with exp -1.4

Next we analyze the simulated graphs by using the algorithm we presented in
the previous section.

4 Case Studies

In all case studies we present in this section, we show the benefit of our algorithm
by comparing it with two other selection policies. In the following tables we
display the 10 most highly connected nodes in terms of Outer Degree, the best
10 in terms of Elementary Cycle value and a random choice of peers selection.
The NodeID that appears in every table is the unique identifier of the peer and
the Traffic value presented in the third column shows the traffic measured in
the selected peer. In the simulated protocol as traffic we consider the number of

58 G. Pitsilis, P. Periorellis, and L. Marshall

messages (pings-pongs) generated by the examined peer itself, as a result of its
own discovery needs. In total, we ran 10 case studies, but due to space limitations
we present results from only 2 of them. The cumulative results, however, have
been drawn from all 10 studies.

Case Study 1. The two tables correspond to the top peers that have been
selected in terms of their Outer Degree and in terms of Elementary Cycle. Our
method has found 8 peers from the top 10 of traffic, opposed to 6 of the Outer
Degree method.

Case Study 2. Peers in high elementary cycle value handled most traffic. The
comparison section in the case studies illustrates the success rate of each selection
method in finding potential Ultra peers in terms of traffic. In all case studies our
method appears to have about the best performance.

A Policy for Electing Super-Nodes in Unstructured P2P Networks 59

5 Results

In the next figure we show the advantage of our method in selecting the busiest
peers against an Outer degree-based selection policy. ”Value” denotes the num-
ber of peers that belong to the top 10 in terms of traffic. As the results show, our
method always does better in selecting the high traffic nodes and on average is
more successful by an average of 15.12%. In other words, picking a peer that our
algorithm suggests is more likely by 15.12% to be one of the top 10 busiest ones
than choosing it by its Outer Degree. Due to low dispersal in the connectivity
and elementary values, in some case studies shown in the table below, we present
the top 12 or top 7 of distinguishable nodes and the results have been normal-
ized to correspond to top 10 classification. Given that in a Gnutella network the

percentage of peers acting as Ultra-peers is less than 10 percent of the whole
community, elementary cycle can be a more effective criterion in spotting the
best amongst the whole community.

6 Applicability

As it can be seen from the description in paragraph 3.3 our algorithm requires
that we have a global picture of the infrastructure to form a decision. This pic-
ture should exhibit the participation of every peer in a loop formation expressed
in gathered topological data. The solution of using topology data crawlers [15]
to collect such data might look easy and applicable but carries the known prob-
lems and weaknesses that centralized solutions have. Alternatively, the peers
themselves could collect that information by exploiting the information commu-
nicated by their neighbors. In order to apply our technique in a typical Gnutella
P2P network we need to look at the protocol level and in particular into the
node discovery architecture. We need to distinguish between pong messages re-
ceived by a neighbor as opposed to pong messages received by a peer on the
recommendation of a neighbor. Let us call these latter type of ping messages

60 G. Pitsilis, P. Periorellis, and L. Marshall

r-pong (from recommended pong). By keeping count of the r-pong messages a
peer can estimate the number of elementary cycles it participates in. Let us say
for example that we want to determine the position of peer A in relation to
B and C. If any pong messages meet the following criteria, then A belongs to
the triangle ABC. The criteria that have to be met for a pong message to be
characterized as r-pong are:

– pong has hop count = 2
– pong has been received from the connection with C (or B)
– pong carries the identity of B (or C respectively)

In networks that run Gnutella protocol, the information required for these three
steps can be found attached on the message descriptors. The higher the number
of different r-pong messages a peer is receiving (in comparison with the rest
of a sub-network), the higher the possibility of being a potential Ultra-peer.
Assuming an honesty-based type of cooperation between the peers (as they need
to supply their personal data to the community), the problem is how to enforce
this type of policy on a network of autonomous entities. Such a policy requires
that all the involved peers would have agreed to all decisions that may have been
reached within the community about sharing the Elementary Cycle information.
Matters such as the actual selection process and consequent promotion of peers
are out of the scope of this paper. Comparing our method with other based on
connectivity statistics taken from the derived measured traffic, we suggest ours as
more convenient since it simply requires shorter time to distinguish participation
in a triangle from the r-pongs and thus decisions for promotions can be made
quicker. Besides, as the simulation shows, elementary cycle has a higher chance
of spotting a potential Ultra-peer.

7 Conclusion

Scale-free networks exhibit a number of properties that distinguish them from
random networks. These properties along with other can be used to distinguish
between important nodes and less significant ones. Gnutella on the other hand
does not exhibit scale free properties that could help us define an election policy
for Ultra-peers based on topologically important nodes. In this paper however
we showed that other measures of connectivity can yield some topological char-
acteristics which can be used to draw conclusions about certain peers. We took
10 Gnutella neighborhoods and analyzed them in terms of Outer Degree and el-
ementary cycle value. We showed that there is a strong link between peers high
in elementary cycle value and also in terms of traffic they handle. We propose
this method to be used as an election policy for suggesting Ultra-peers.

Acknowledgments

We would like to thank Apostolos Niaouris for his contribution in clarifying
our mathematical definitions. All the data and case studies as well as extensive
report on this topic, are available on request from the Authors.

A Policy for Electing Super-Nodes in Unstructured P2P Networks 61

References

1. A.H.Chen and A.M. Schroeder: ”A Modified Depensation Model of Peer to Peer
Networks: Systematic Catastrophes and other potential Weaknesses”. AMATH 383
(June 2002).

2. The Gnutella v0.4 protocol Specification, http://www.clip2.com
3. D. Zeinalipour, T. Folias: ”A quantitative Analysis of the Gnutella Network [4]

Traffic”. University of California - Riverside, Dept. of CS & Engineering (June
2002).

4. R.Massey, S. Bharath, A. Jain:, ”Gnutella-Pro:What bandwidth barrier?”,
http://www.cs.ucsd.edu/classes/wi01/cse222/projects/reports/gnutellapro-5.pdf

5. R. Schollmeier,I. Schollmeier: ”Why Peer-to-Peer Does Scale:An analysis of P2P
Traffic Patterns”. In Proceedings of 2nd International Conference on Peer-to-Peer
Computing P2P’02, IEEE.

6. G. Pandurangan, P. Raghavan and E. Upfal: ”Building Low-Diameter Peer-to-Peer
Networks”. IEEE Journal on Selected Areas in Communications (JSAC), 21(6),
(August 2003) , 995-1002.

7. M.Prinkey: ”An Efficient Scheme for Query Processing on Peer-to-Peer Networks”.
Aeolus Research Inc., Technical report (August 2002).

8. C. Rohrs, A. Singla: ”Ultrapeers: Another Step Towards Gnutella Scalability”, (No-
vember 2002), http://www.limewire.com/developer/Ultrapeers.html

9. Ernest Miller: ”Compulsory Licensing - The Death of Gnutella and the Triumph
of Google”, Yale Law school web site, http://research.yale.edu/lawmeme/

10. P. Periorellis et. al. : ”Dealing with Complex Networks of Process Interactions: A
Security Measure”. In Proceedings of the 9th IEEE International Conference on
Engineering of Complex Computer Systems, Florence, Italy (14-16 April, 2004) .

11. J. Ritter: ”Why Gnutella Can’t Scale. No, Really”, (February 2001),
http://www.darkridge.com/ jpr5/doc/gnutella.html

12. R. Albert, A.L.Barabasi: Statistical mechanics of complex networks. Reviews of
Modern Physics, (2002), 74(1): p. 47-97.

13. A.L.Barabasi, R. Albert: Emergence of scaling in random networks. Science
vol.286 (1999) p.509-512.

14. A.Carre: Graphs and Networks, Clarendon Press, (1979), Oxford.
15. D. Zeinalipour-Yazti, M. Dikaiakos: ”Design and Implementation of a Distrib-

uted Crawler and Filtering Processor”. In Proceedings of the fifth Workshop on
Next Generation Information Technologies and Systems (NGITS 2002), vol.2382,
Springer (June 2002) p.58-74.

16. A.Moura, Y.Lai, A.Motter: ”Signatures of small-world and scale-free properties
in large computer programs”, Physical Review. E 68,017102 (2003)

17. M. Jovanovic, F. S.Annexstein and K. A.Berman: ”Modeling Peer-to-Peer Network
Topologies through Small World Modelsand Power Laws”, In TELFOR, Belgrade,
Yugoslavia, (November 2001).

18. B. Yang, H.Garcia-Molina: ”Designing a Super-Peer Network”. In Proceedings of
the 19th International Conference on Data Engineering (ICDE), IEEE Computer
Society (5-8 March 2003) Bangalore, India.

ACP2P: Agent Community Based Peer-to-Peer
Information Retrieval

Tsunenori Mine1, Daisuke Matsuno2, Akihiro Kogo2, and Makoto Amamiya1

1Faculty, 2Graduate School
of Information Science and Electrical Engineering,

Department of Intelligent Systems, Kyushu University,
6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
{mine, kogo, amamiya}@al.is.kyushu-u.ac.jp,

http://www-al.is.kyushu-u.ac.jp/~mine/mine-e.html

Abstract. This paper proposes an agent community based information
retrieval method, which uses agent communities to manage and look up
information related to users. An agent works as a delegate of its user
and searches for information that the user wants by communicating with
other agents. The communication between agents is carried out in a peer-
to-peer computing architecture.

In order to retrieve information relevant to a user query, an agent
uses two histories : a query/retrieved document history(Q/RDH) and a
query/sender agent history(Q/SAH). The former is a list of pairs of a
query and retrieved document information, where the queries were sent
by the agent itself. The latter is a list of pairs of a query and the address
of a sender agent and shows “who sent what query to the agent”. This is
useful for finding a new information source. Making use of the Q/SAH
is expected to have a collaborative filtering effect, which gradually cre-
ates virtual agent communities, where agents with the same interests stay
together. Our hypothesis is that a virtual agent community reduces com-
munication loads involved in performing a search. As an agent receives
more queries, then more links to new knowledge are acquired. From this
behavior, a “give and take”(or positive feedback) effect for agents seems
to emerge.

We implemented this method with Multi-Agent Kodama, and con-
ducted experiments to test the hypothesis. The empirical results showed
that the method was much more efficient than a naive method employing
’multicast’ techniques only to look up a target agent.

1 Introduction

The rapid growth of the World Wide Web has made conventional search engines
suffer from decreasing coverage in searching the Web. Internet users meet infor-
mation floods every day, and are forced to filter out and choose the information
they need.

In order to deal with these problems, a lot of studies on distributed informa-
tion retrieval(e.g. [1]), information filtering(e.g. [2]), information recommenda-
tion (e.g. [3]), expert finding(e.g. [4]), or collaborative filtering (e.g. [5],[6],[7],[8])

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 62–73, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

ACP2P: Agent Community Based Peer-to-Peer Information Retrieval 63

have been carried out. Most systems developed in that research are, unfortu-
nately, based on the server-client computational model and are often distressed
by the fundamental bottle neck coming from their central control system ar-
chitecture. Although some systems based on the peer-to-peer (P2P for short)
computing architecture (e.g. [9],[10],[11],[12]) have been developed and imple-
mented, each node of most those systems only deals with simple and monolithic
processing chores.

Considering these issues, we presents an Agent Community based P2P in-
formation retrieval method (ACP2P method for short), which uses agent com-
munities to manage and look up information related to a user query. An agent
works as a delegate of its user and searches for information that the user wants
by communicating with other agents. The communication between agents is car-
ried out based on a P2P computing architecture. In order to retrieve information
relevant to a user query, an agent uses two histories : a query/retrieved document
history(Q/RDH for short) and a query/sender agent history(Q/SAH for short).
The former is a list of pairs of a query and retrieved document information,
where the queries were sent by the agent itself and the document information
includes the addresses of agents that returned the document. The latter is a list
of pairs of a query and a sender agent’s address and shows “who sent what query
to the agent”. This is useful for finding a new information source. Making use of
the Q/SAH is expected to have a collaborative filtering effect, which gradually
creates virtual agent communities, where agents with the same interests stay
together. Our hypothesis is that a virtual agent community reduces communi-
cation loads involved in performing a search. As an agent receives more queries,
then more links to new knowledge are acquired. From this behavior, a “give
and take”(or positive feedback) effect for agents seems to emerge. We conducted
the experiments to test the hypothesis, i.e., to evaluate how much the Q/SAH
work for reducing communication loads and for causing a “give and take” effect.
The experimental results showed that the method reduced communication loads
much more than other methods which do not employ Q/SAH to look up a target
agent, and was useful for creating a “give and take” effect.

The remainder of the paper is structured as follows. Section 2 considers
the ACP2P method. Section 3 discusses the experimental results and Section 4
describes related work.

2 Agent Community Based Peer-to-Peer Information
Retrieval Method

2.1 Overview of the ACP2P Method

The ACP2P method employs three types of agents: user interface(UI) agent,
information retrieval(IR) agent and history management(HM) agent. A set of
three agents (UI agent, IR agent, HM agent) is assigned to each user. Although
a UI agent and an HM agent communicate only with the IR agent of their user,
an IR agent communicates with other users’ IR agents not only in the community

64 T. Mine et al.

UI Agent IR Agent HM Agent

user�s query

query

look up query

list of target agents

of the agents RN ?

YES

query

���

NO

query

target IR agents
on the list

Portal Agent (PA)

All IR agents in a community

query

Direct sending

Multicast

History
Q/RDH
Q/SAH

contentAnswers

YES or No Answers

list of
target agents

���

or Received from PA ?

query

Fig. 1. Actions for Sending a Query

IR Agent HM Agent

(query, Agent s Address)

(query, Agent s Address)

Return Answers

Original
Contents

History
Q/RDH
Q/SAH

content

update Q/SAH
look up query

UI Agent IR Agent HM Agent

Presents
Results

(query, Agent s Address,
Answers)

History
Q/RDH
Q/SAH

content

Answers

update Q/RDH & Content

���

Fig. 2. Actions for Receiving a Query(left) and Answers(right)

it belongs to, but also in other communities, to search for information relevant
to its user’s query. A pair of Q/RDH and Q/SAH histories is managed by the
HM agent.

Fig. 1 show the processes or data flows in the cases that an IR agent sends a
query. Fig. 2(left and right) show in the cases that an IR agent receives a query
from another IR agent or a portal agent, and an IR agent receives answers from
other IR agents, respectively. When receiving a query from a UI agent, an IR
agent asks an HM agent to look up target agents with its history or a portal
agent to do it using a query multicasting technique (Fig. 1). When receiving
a query from other IR agents, an IR agent looks up the information relevant
to a query, sends an answer to the query sender IR agent, and sends a pair
of a query and the address of the query sender IR agent to an HM agent so
that it can update Q/SAH (Fig.2, left). The returned answer is either a pair
of a ’YES’ message and retrieved documents or a ’No’ message representing no
relevant information, provided that retrieved documents are not returned when
the query comes through a portal agent. When receiving answers with a ’YES’

ACP2P: Agent Community Based Peer-to-Peer Information Retrieval 65

UI Agent
HM Agent

IR Agent

query multicasting
request query

(multicast)

query

query

Portal
Agent

Portal
Agent

history

Q/RDH
Q/SAH
Contents

history

history

OC

Original Contents

OC

OC

Fig. 3. Agents and their Community Structure

message from other IR agents, an IR agent sends them to a UI agent, and sends
them with a pair of a query and the addresses of answer sender IR agents to
an HM agent (Fig.2, right). Fig. 3 shows an example of the agent community
structure which the ACP2P method is based on.

A portal agent in the figure is the agent which is a representative of a com-
munity and manages all member agents’ addresses there, where a member agent
of a community designates an IR agent. When a member agent wants to find any
target agents which have information relevant to a query, the agent looks them
up using two histories: Q/RDH and Q/SAH, and Content files. If the target
agents are found, a query is sent directly to them, and their retrieved results
are also returned directly to the query sender IR agent. If the requested number
of such agents is not found, the agent asks the portal agent to send the query
to the all member agents in the community by a multicast technique. At that
time, all the answers will be returned to the portal agent. If the number of re-
sults with a ’YES’ message reaches the requested number, without waiting for
the rest of answers by other IR agents, the portal agent sends them back to the
query sender IR agent. Even if the number of ’YES’ messages did not reach the
requested number after all IR agents replied, the portal agent also sends the
currently held results to the query sender IR agent.

2.2 Document Content and Histories

Table 1 shows the formats of a document content file: Content and two histories:
Q/RDH and Q/SAH. The document content file consists of a list of 4-tuples
<title, body, original, range>, namely the title of a retrieved document, its
text content, the address of the IR agent whose user owns the document, and the
allowed distribution range of the document, respectively. All documents retrieved
and returned by other IR agents are shared into the Content file without any
redundant registration.

66 T. Mine et al.

Table 1. The structures of Content file, Q/RDH file, and Q/SAH file

Content title the title of document
body the content of document

original the address of the IR agent whose user created the document
range the range allowed to be distributed(ALL, Community, Agent)

Q/RDH query a query sent by the IR agent itself
from the address of other IR agent which has replied to the query in

the query field
Q/SAH query a query sent by the agent recorded in the from field

from the address of other IR agent who sent the query in the query field

Table 2. A part of document content

title body original range
Netscape informal FAQ
Japanese version

HTML text in the file com Netscape@ ALL

Table 3. A part of Q/SAH

query from
telegram root.p2p.com telegram@
treatment root.p2p.sic hepatitis type C@
Asthma root.p2p.sic Asthma@
Human root.p2p.sic Adult Children@
Thing root.p2p.sic Alzheimer’s Disease@
Ill root.p2p.sic Jacob Disease@
Dream root.p2p.sic Dealer@
Mastocarcinoma root.p2p.sic Mastocarcinoma@
Hoof root.p2p.sic Hoof-and-Mouth-Disease@

The Q/RDH file comprises a list of pairs of <query, from>, each of which
is a query sent by the agent itself and the address of IR agent that returned this
retrieved information, respectively. The Q/SAH file is a list of pairs <query,
from>, each of which is a query and the address of the agent which sent the
query to the IR agent. Table 2 shows an example of part of a document content
file. Table 3 also shows an example of part of Q/SAH file, which was originally
written in Japanese.

2.3 Determining Target Agents Using Two Histories

In order to determine the target agents to send a user query, the IR agent uses
the contents of retrieved document files and two histories, Q/RDH and Q/SAH.
Fig. 4 depicts an example how the target agents are found, where A© to E©
represent IR agents. For simplicity, we assume here that the IR agent does the

ACP2P: Agent Community Based Peer-to-Peer Information Retrieval 67

query :Note PC
from :C
title : ...
body : ...
original :C
range: ALL

query:Wireless LAN
from :D
title : ...
body : ...
original :E
range: ALL

Q/SAH

query :Note PC
from :A

query :Mini Note PC
from :B

D

E

A sends query
“Wireless LAN”
to both D and E

C sends
query ”Note
PC” to both
A and B.

Q/RDH

Q/SAH

Q/RDH

A C

Q/RDH

Q/SAHB
Q/RDH

Q/SAH

Q/RDH

Q/SAH

Content

Fig. 4. Example to find target IR agents using two histories. A, B, C, D and E in
circles represent IR agents’ name, respectively.

job of an HM agent. Furthermore, to show the correspondence between a query
and a retrieved document, we show the content file in Q/RDH.

A© has two query entries in its Q/RDH. Both queries were sent by A© itself.
This figure shows that A© sent query ’Note PC’ to C© and got the retrieved
results from C©. C© recorded the query and A©’s address into its Q/SAH. Since
A© received the results from C©, C©’s address was recorded in the ’from’ field
of the same record as the query in A©’s Q/RDH. In addition, since the content
included in the results is the original of C©’s user, C©’s address is seen in the
’original’ field of the content. In the same way, A© also sent query ’Wireless LAN’
to D©, D© returned retrieved documents to it, and D©’s address was recorded into
the ’from’ field of the same record as query ’Wireless LAN’ in A©’s Q/RDH.
Since the documents include a content created by E©’s user, E©’s address is seen
in the ’original’ field of the content.

After getting these histories, if A© sends another query which is similar to
’Wireless LAN’, say ’LAN’, A© not only can find D© in a ’from’ field of Q/RDH,
but also find E© from an ’original’ field of the content file by calculating a simi-
larity between the query and the content file. Accordingly A© sends the query to
both D© and E©.

The figure also shows that C© received query ’Mini Note PC’ from B©, and
both the query and B©’s address were recorded into the Q/SAH. Even if C© has
not sent a query, it can find information related to the queries it received using
its Q/SAH. Therefore when C© sends a query, say ’Note PC’, it will find A© and
B© with the Q/SAH and can consequently send the query to them.

2.4 The Effect of Two Histories: Q/RDH and Q/SAH

As mentioned in the previous section, both Q/RDH and Q/SAH help to find
target agents to send a query to. If an IR agent can find a sufficient number of

68 T. Mine et al.

target agents, no ’query multicasting’ is carried out. Both histories, consequently,
help to reduce communication loads between agents.

As a user creates more information, his/her IR agent can return the retrieved
results to more queries. Such an IR agent consequently receives more queries from
other agents. Thus, the agent accumulates more information sources comprised
of pairs of a query and a sender agent’s address in its Q/SAH. As the results,
more queries the agent which has rich information receives, more information
sources it acquires. That leads to the emergence of a ’give and take’ effect.

Further, the user’s positive or negative judgments concerning the retrieved
results could be embedded into them in Q/RDH. These user evaluations are ex-
pected to be useful for finding target agents which will return relevant informa-
tion, creating a collaborative filtering effect. This will be pursued in future work.

3 Experiments

3.1 Implementation with KODAMA

The ACP2P method was implemented with Multi-Agent Kodama (Kyushu uni-
versity Open & Distributed Autonomous Multi-Agent) [13]. Kodama comprises
hierarchical structured agent communities based on a portal-agent model. A por-
tal agent(PA) is the representative of all member agents in a community and
allows the community to be treated as one normal agent outside the community.
A PA has its role limited in a community, and the PA itself may be managed by
another high-level portal agent. A PA manages all member agents in its commu-
nity and can multicast a message to them. Any member agent in a community
can ask the PA to multicast its message.

All agents form a logical world which is completely separated from the
physical world consisting of agent host machines. That means agents are not
network-aware, but are organized and located by their places in the logical world.
This model is realized with the agent middle-ware called Agent Communication
Zone(ACZ for short). ACZ is primarily designed to act as a bridge between dis-
tributed physical networks, creating an agent-friendly communication infrastruc-
ture on which agents can be organized in a hierarchical fashion more easily and
freely. ACZ is also designed to realize a peer-to-peer communication between
agents.

A Kodama agent consists of a kernel unit and an application unit. The kernel
unit comprises the common basic modules shared by all Kodama agents, such as
the community contactor or message interpreter. The application unit comprises
a set of plug-in modules, each of which is used for describing and realizing a
specialized or original function of agents. All agents of ACP2P are realized by
implementing their functions in plug-in modules of Kodama’s application unit.

3.2 Preliminaries

We used the Web pages of Yahoo! JAPAN[14] for the experiments. The Web
pages used are broadly divided into five categories: animals, sports, computers,

ACP2P: Agent Community Based Peer-to-Peer Information Retrieval 69

medicine, and finance. Each of them consists of 20 smaller categories, which are
selected in descending order of the number of Web pages recorded in a category.
An IR agent is assigned to each selected category, and thus 100 IR agents are
created and activated in the experiments. A category name is used as the name
of an IR agent, and the Web pages in the category are used as the original
documents of the agent as described in section 2.2. All IR agents were assigned
to the same one community for simplicity.

We conducted experiments to show how two histories help to reduce commu-
nication loads between agents looking for information relevant to a query, and
how Q/SAH helps in searching for new information sources. To perform the ex-
periments, we compared three methods : 1) ACP2P with a Q/SAH(wQ/SAH for
short), 2)ACP2P without a Q/SAH(woQ/SAH for short), and 3) Simple method
always employing a ’multicast’ technique (MulCST for short).

In the experiments, two query sets:QL=1 and QL=2, were used. QL=1 and
QL=2 consist of 10 queries, whose query length is one and two, respectively,
where query length means the number of terms in a query. When using queries
belonging to QL=1, 10 nouns are extracted from every category assigned to each
IR agent in descending order of their frequency of occurrence in the category.
Each of noun is used as a query of the IR agent. When using those belonging
to QL=2, 5 nouns are extracted and the combinations of the extracted 5 nouns
taken in pairs create 10 queries.

3.3 Similarity Measure for Retrieving Information Relevant to a
Query

In order to find the requested number of target agents to be sent a query, we
calculated Score(query, t agent), which returned the similarity value between
query query and target agent t agent, with equation (1); Score(query, t agent)
becomes higher if t agent sends a greater number of similar queries and returns
more documents related to query.

Score(query, t agent) =
k∑

i=1

cos(query, qhdi)

+
m∑

i=1

(cos(query, qhsai) + ϕ(i)) +
n∑

i=1

Simd(query, doci) (1)

ϕ(i) =

⎧⎨
⎩

δ if qhsai is the query sent by other IR
agent directly.

0 otherwise

In equation (1), query consists of w1, ..., wm, and wi (1 ≤ i ≤ m) is a
term in query. qhd and qhsa represent a query in a record of Q/RDH and
Q/SAH, respectively. The first term

∑k
i=1 cos(query, qhdi) returns the to-

tal score of the similarities between query and each of k number of queries
sent to t agent. The second term

∑m
i=1(cos(query, qhsai) + ϕ(i)) represents

70 T. Mine et al.

the score between query and qhsai, which is the i th of m queries sent by
t agent in Q/SAH. ϕ(i) is a weight to consider the importance of ‘direct send-
ing of a query’. If qhsai is sent directly by t agent, δ is added to the score. In
the experiment, we set it to 0.1 from our empirical experience. The last term∑n

i=1 Simd(query, doci) is the total score of similarities between query and
each of n documents originally created or just owned by the user of t agent.
Simd(query, doc) represents the similarity between query and the content of re-
trieved document doc. It is calculated with the following equation, which is a
simplified of BM15[15].

Simd(query, doc) =
m∑

i=1

tfi

tfi + 1

Where tfi represents the frequency of occurrence of wi in doc.
After calculating Score(query, t agent) for each IR agent t agent in the Con-

tent file and two histories : Q/RDH and Q/SAH, the requested number (RN) of
target agents will be selected in the descending order of Score(query, t agent),
which value should be more than 0. Whenever the RN of agents is not found,
the ’query multi-casting’ technique will be employed by a portal agent. At that
time, all answers will be returned to the portal agent. If a target IR agent finds
information relevant to query, it returns a ’YES’ message, otherwise a ’NO’ mes-
sage. The judgment as to whether or not a document is relevant to a query is
made according to the criterion of Boolean AND matching, that is, if the docu-
ment includes the conjunctions of all terms in query, it will be judged relevant,
otherwise irrelevant.

3.4 Experimental Results

First, we conducted the experiment to show how much ACP2P with Q/SAH
worked for reducing communication loads. To do that, we investigated the change
of the average number of messages exchanged by each IR agent for every query
input. The experiments were conducted with two query sets: QL=1 and QL=2
on which tests with 4 different requested numbers: RN=3, 5, 7 and 10. In both
query sets’ cases, the average number of messages exchanged by each IR agent is
reduced for every query input. Due to the limitation of the space, we will show
it elsewhere[16].

Next, for both QL=1 and QL=2, we compared the three methods: wQ/SAH,
woQ/SAH and MulCST. The RN was set to 10. The results are shown in Fig.
5. In both cases, the number of exchanged messages in MulCST almost did not
change for every query input, while that for both wQ/SAH and woQ/SAH was
reduced. In addition, wQ/SAH had better performance than woQ/SAH. That
means Q/SAH worked well to look up relevant information with less communi-
cation efforts and made the positive feedback effect.

We also compared three methods for the average number of documents ac-
quired by each IR agent. The results are shown in table 4. Except for the case
of RN=3 of QL=2, there was little difference between wQ/SAH and MulCST.

ACP2P: Agent Community Based Peer-to-Peer Information Retrieval 71

Fig. 5. The average number of messages exchanged by each IR agent for every query
input, where QL=1 is the left and QL=2 the right. RN=10 in both cases.

Table 4. Comparison on average number of acquired documents when query length is
1 (left) and 2 (right)

QL=1, RN= 3 5 7 10
wQ/SAH 269.1 385.3 443.0 497.6
woQ/SAH 258.8 331.6 424.9 476.4
MulCST 233.8 366.4 421.3 487.0

QL=2, RN= 3 5 7 10
wQ/SAH 54.9 126.3 178.9 226.8
woQ/SAH 54.8 96.8 150.0 208.3
MulCST 85.3 148.4 191.0 232.6

4 Related Work

There is lots of work related to the topics touched in this paper, such as distrib-
uted information retrieval(DIR), P2P file searching, collaborative filtering and
so forth. DIR selects some IR systems to send a query, aggregates the results
returned by the selected IR systems, and presents them to a user. Before se-
lecting the IR systems to be sent a query, the resource description of each IR
system is often created[1]. In the ACP2P method, Q/RDH incrementally creates
an effect similar to the resource description, and furthermore, Q/SAH works as
good heuristic in finding relevant information.

A lot of P2P file searching systems such as Freenet[10], Chord[9], Gnutella[11]
and Napster[12] have been proposed. Freenet and Chord are carried out in a pure
P2P computing architecture. They neither employ ’broadcast’ techniques like
Gnutella, nor have a centralized server machine like Napster. Freenet provides
information-sharing and information-finding functions among anonymously dis-
tributed nodes. Although Chord does not provide anonymity of nodes, it has
an efficient protocol for looking up nodes. Their node searching strategies are
conducted according to keywords attached to the information of the nodes. On
the other hand, The ACP2P method makes use of the content information of
documents, and two histories: Q/RDH and Q/SAH to search for target agents
with relevant information. In particular, Q/SAH provides similar effects to link
analysis like PageRank[17] or HITs algorithm[18] and makes a natural collabo-
rative filtering effect emerge.

72 T. Mine et al.

I-Gaia[19] is an application layer for information processing in the DIET
architecture, which is a Multi-Agent System development platform. ACP2P is
also a Multi-Agent-based application, but it does not use a mediator agent like t-
infocytes of I-Gaia to learn appropriate paths between agents in sending queries
or publishing documents.

Lots of work on the field of Collaborative Filtering (e.g.[5],[6],[20],[21],[8]) has
been done. Most of it however assumes the server-client computational model
and needs a procedure to collect all data from other nodes explicitly. The ACP2P
method takes a distributed data management method with agent communities
based on a P2P computing architecture, and makes a natural collaborative fil-
tering effect emerge, with two histories.

5 Conclusion and Future Work

We discussed an agent-community-based peer-to-peer information retrieval
method, called the ACP2P method, which used the content of retrieved doc-
ument files and two histories: Q/RDH and Q/SAH to find target agents to be
sent a query. The method was implemented with Multi-Agent System Kodama.

We conducted several experiments to show whether or not two histories
helped to reduce communication loads between agents in searching for infor-
mation relevant to a query, and whether or not Q/SAH helped in looking up
new information sources. The experimental results showed the efficiency of the
ACP2P method and the usefulness of two histories for looking up new infor-
mation source. We also investigated and confirmed that the number of agents
exchanging query messages together was increased by Q/SAH although we could
not describe the detail about it due to the limitation of the space.

We are currently investigating the accuracy of or a method ranking retrieved
results, and considering how we can make use of user feedback embedded into
the results. Developing an effective method for creating hierarchical agent com-
munities to allocate agents to at the initial stage and mining two histories for
catching a change of user interests are future work.

Acknowledgment

This research was partly supported by the Telecommunication Advancement Or-
ganization(TAO) of Japan, under the grant to “the Research on Management of
Security Policies in Mutual Connection” and by the Japan Society for the Promo-
tion of Science under the Grant-in-Aid for Scientific Research (C) No. 16500082.

References

1. Callan, J., Connell, M.: Query-based sampling of text databases. ACM Transac-
tions on Information Systems 19 (2001) 97–130

2. Lang, K.: NewsWeeder: learning to filter netnews. In: Proceedings of the 12th
International Conference on Machine Learning, Morgan Kaufmann publishers Inc.:
San Mateo, CA, USA (1995) 331–339

ACP2P: Agent Community Based Peer-to-Peer Information Retrieval 73

3. Schafer, J.B., Konstan, J.A., Riedi, J.: Recommender systems in e-commerce. In:
Proceedings of the 1st ACM Conference on Electronic Commerce. (1999) 158–166

4. Yimam-Seid, D., Kobsa, A.: Expert finding systems for organizations: Problem and
domain analysis and the demoir approach. Journal of Organizational Computing
and Electronic Commerce 13 (2003) 1–24

5. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to
weave an information tapestry. Communications of the ACM 35 (1992) 61–70

6. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: Open
architecture for collaborative filtering of netnews. In: Conference on Computer
Supported Cooperative Work. (1994) 175–186

7. Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B.M., Herlocker,
J.L., Riedl, J.: Combining collaborative filtering with personal agents for better
recommendations. In: AAAI/IAAI. (1999) 439–446

8. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: WWW10. (2001) 285–295

9. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications. (2001) 149–160

10. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. Designing Privacy Enhancing Technolo-
gies: International Workshop on Design Issues in Anonymity and Unobservability,
http://www.doc.ic.ac.uk/˜twh1/academic/ (2001)

11. Gnutella: http://gnutella.wego.com/ (2000)
12. Napster: http://www.napster.com/ (2000)
13. Zhong, G., Amamiya, S., Takahashi, K., Mine, T., Amamiya, M.: The design and

application of kodama system. IEICE Transactions INF.& SYST. E85-D (2002)
637–646

14. Yahoo: http://www.yahoo.co.jp/ (2003)
15. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-poisson

model for probabilistic weighted retrieval. In: Proceedings of the 17 Annual In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. (1994)

16. Mine, T., Matsuno, D., Kogo, A., Amamiya, M.: Design and implementation of
agent community based peer-to-peer information retrieval method. In: CIA 2004,
LNAI 3191. (2004) 31–46

17. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
In: Proc. of 7th International World Wide Web Conference:WWW7 Conference.
(1998)

18. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46 (1999) 604–632

19. Gallardo-Antolin, A., Navia-Vasquez, A., Molina-Bulla, H.Y., Rodriguez-Gonzalez,
A.B., Valverde-Albacete, F.J., Cid-Sueiero, J., Figuieras-Vidal, A., Koutris, T.,
Xiruhaki, C., Koubarakis, M.: I-Gaia : an Information Processing Layer for the
DIET Platform. In: the first international joint conference on Autonomous Agents
and Multi Agent Systems (AAMAS). (2002) 1272–1279

20. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework
for performing collaborative filtering. In: SIGIR99. (1999) 230–237

21. Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering.
In: SIGIR-2001 Workshop on Recommender Systems. (2001)

Emergent Structures of Social Exchange in
Socio-cognitive Grids

Daniel Ramirez-Cano and Jeremy Pitt

Intelligent Systems & Networks Group, Dept. of Electrical & Electronic Eng.,
Imperial College London, SW7 2BT, UK
{d.ramirez, j.pitt}@imperial.ac.uk

Abstract. Several different forms of peer-to-peer interactions, associ-
ations and interpersonal relations between human and artificial intel-
ligences are described. We build upon a new form of grid computing
which integrates human and artificial ‘processes’ in electronically sat-
urated physical spaces, called socio-cognitive grids. We start from the
analysis of three scenarios in P2P applications: digital rights manage-
ment, mass user support and customer-to-customer interaction. These
enable us to identify those factors that motivate the computing compo-
nents in the socio-cognitive grids to form social structures, individually
incorporating socio-cognitive intelligence and social awareness. In order
to study the emergent properties of these social structures, such as reci-
procity, social exchange and social networking, we need a theory that
will help us understand the dynamics of social integration and support.
We explore the use of a classical sociological theory of social structures
and interpersonal relations. Subsequently we outline the components of
a software simulation built on this theory and designed to formalize and
evaluate this socio-computational intelligence. Ultimately our main aim
is to analyse and understand those emergent properties that lead to the
formation of stable and scalable social structures in socio-cognitive grids.

1 Introduction

The widely-recognized peer-to-peer (P2P) applications (e.g. Napster, Kazaa, E-
mule) have gained their reputation first due to the large number of people using
these file-sharing applications and second because of the public controversy that
has been created about whether or not their use is legal. However they have
proved to have a similar or even greater impact in the research community since
they have demonstrated that from basic peer-to-peer interactions it is possible
to dynamically create social networks within which people can collaborate by
sharing and retrieving information [1].

Along similar lines, grid computing has shown that the concept of sharing
distributed resources is a feasible solution to large-scale applications that are
characterized by resource-intensive processes [2]. Grid computing demonstrates
that researchers in different geographical locations are willing to collaborate by
sharing resources and working together to solve complex problems that require

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 74–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Emergent Structures of Social Exchange in Socio-cognitive Grids 75

large-scale data analysis, terabytes of storage space and expert collaboration.
Some of the programmes in the exploration of grid computing include EuroGrid
and Grid Interoperability (GRIP) [3] in the European Union and the Globus
alliance in the U.S. [4].

On the other hand both the EU i3 research programme [5] and the field of
pervasive (or ubiquitous) computing recognise and promote the idea that phys-
ical spaces can be transformed and treated as electronic environments. Such
programmes focus on the software and hardware technologies required to create
environments which are saturated with computing devices and wireless com-
munications, yet appear to be gracefully integrated to the human user(s), and
indeed, gracefully integrate the human users themselves.

Thus the label “socio-cognitive grid”, as identified in [6], stands for the term
which embraces the fields of grid, pervasive and P2P computing. This includes
applications which are composed of electronically saturated physical spaces to-
gether with seamlessly integrated and interacting intelligences, both computa-
tional processes (e.g. software agents) and human processors (i.e. people). There-
fore, a socio-cognitive grid is an extension and generalisation of grid computing,
whereby if grid computing is defined as applying resources from many networked
computers – at the same time – to a single problem (see e.g. [7]), then socio-
cognitive grid computing can be defined as the application of resources from
many networked computers and people at the same time to the same single
problem. Note then that the kinds of “problem” to be solved are not just those
addressed by grid computing, (i.e. large-scale data processing on networked com-
puters for problems such as mapping the human genome), but can be far more
open-ended and non-directed, with radically new forms of human-computer in-
teraction and computer-mediated human-human interaction.

In this paper we present the analysis of different forms of peer-to-peer in-
teractions, associations and interpersonal relations that lead to the formation of
social structures in these socio-cognitive grids. Our aim is to characterize those
emergent properties of the social structures that contribute to stable and scalable
socio-cognitive grids. Furthermore, we are particularly interested in understand-
ing how individual behaviour of peers affects social cohesion, social support,
collaboration and self-regulation in the socio-cognitive grids.

We start with the description of three scenarios (Section 2) in P2P ap-
plications: digital rights management (DRM), mass user support (MUS) and
customer-to-customer interactions (C2C). In Section 3 we present the analy-
sis of these three scenarios which, we argue, will disclose the essential proper-
ties of the social associations in the socio-cognitive grids, while in Section 4 we
adopt and adapt the classical sociological theory of interpersonal relationships
and social structures, in an attempt to define the associations occurring inside
the socio-cognitive grids. In Section 5 we determine the basic building blocks
needed for the construction of a software simulation to evaluate the concepts
defined previously. Finally Section 6 closes the analysis with a discussion and
suggests further work towards the logical formalization of social structures in
socio-cognitive grids.

76 D. Ramirez-Cano and J. Pitt

2 Scenarios

In this section we present P2P applications in which:

– information trading is involved [8], i.e. information itself is a commodity, and
the exchange of content is the main form of interaction in the society.

– there is some subjective utility to the end user consuming the content, for ex-
ample, when asking a question, both the quality of the answer and reliability
of the source are factors to be considered.

– there is a community of content creators and end users which thrives on
mutual collaboration, i.e. the only rule-enforcing authority is self-regulation
in the form of reputation and social attitudes.

– some mechanism exists for evaluation and feedback about the quality of con-
tent and of behaviour to the community, in particular, anonymous behaviour
is not tolerated and all actions have (social) consequences;

– given a community of users interacting via their agents, those agents them-
selves form an open agent society [8], and the interactions of the agents have
corresponding consequences for the users in the human community.

2.1 Digital Rights Management

John is walking down the street and on his way he passes by a record shop. The
shop has recently invested in a new software agent application, and a W-LAN
and Bluetooth infrastructure which allows an agent to broadcast twenty-second
samples of selected songs to everyone within proximity. An agent on John’s
mobile registers interest in a selection of the advertised songs and consequently
accepts a sample of the latest song from a new band. After listening to the
sample John wants to have the complete track, so he asks his personal agent to
buy it. The transaction is made based on a digital rights system called LWDRM
[9]. This technology allows John’s agent to receive the song and a digital licence
which is attached to the song. In return the agent in the record shop receives
the payment through a micro-payments infrastructure (MPI) that charges the
cost of the song directly to John’s mobile phone bill. The digital licence that
John bought authorizes him to share the song and since John rated it so highly,
his agent decides to share it with John’s friends which initiates an excellent
word-of-mouth promotion for the new band.

2.2 Mass User Support

An important characteristic of socio-cognitive grids is the opportunity for social
collaboration and coordination of people and their agents. In line with socio-
cognitive grids, mass user support stands for the social coordination mechanisms
and services that support a collective user-base [10]. Richard is looking for a flat
in Liverpool and finally he finds the place that seems right to him. However
Richard is new in town and he has no idea about the neighbourhood and the
security of the area. Consequently he programs his agent to ask other agents in

Emergent Structures of Social Exchange in Socio-cognitive Grids 77

the vicinity and gather as much information as possible about the neighbour-
hood and if possible about the flat itself while he visits the area for the second
time. Interestingly, Richard’s agent receives only good comments about the area
but opportunely, after going through several mediators, his agent finds the agent
of the previous tenant, George. According to George’s agent the flat is not in
satisfactory condition and even worse, has a nuisance problem coming from ad-
jacent neighbours who have a band. Richard decides not to take the flat and
keeps looking for more options.

2.3 Customer-to-Customer Interaction

Lucy is in her second year in college and she needs to find accommodation.
Her personal agent starts interacting with her friends’ agents in college asking
for available accommodation close to the campus or at least information as
to how to find accommodation. Michelle’s agent receives Lucy’s request and
knows that Lucy is a very good friend who has helped Michelle several times
in the past thus the agent decides to help Lucy. Michelle’s agent knows that
Rita (another student) is advertising an available room in her shared house thus
extends Lucy’s request to Rita. Lucy’s and Rita’s agents exchange information
through Michelle’s agent and Lucy’s agent discovers that the room is within her
price range, it is within 10 min. walking distance of campus and is available
now. Rita’s agent finds out that Lucy is a non-smoker and she is studying the
same course as Rita. It is just what both girls are looking for. Lucy receives the
information about Rita’s house and five more options that her personal agent
has found from people around, plus a list of suggestions about renting private
housing that the agent retrieved from the private housing office. Lucy decides
to consider Rita’s offer therefore her agent contacts Rita’s agent and the girls
personally meet in the college’s common room.

3 Requirements for the Realization of Socio-cognitive
Grids

From the analysis of the scenarios described above we observe a set of techno-
logical specifications that define the communication at the physical level and a
different group of sociological specifications at the logical level that explain the
social interactions and associations in the socio-cognitive grids.

3.1 Technological Specifications

We are interested in communities of people in which each person is portrayed by
a software agent placed in a portable electronic device(e.g. PDA, mobile phone,
laptop) which is enabled with a wireless transmission technology (e.g. Bluetooth,
IEEE 802.11). Presumably these specifications are relatively straightforward to
meet and technologically feasible since it is possible to build these systems with
today’s technology.

78 D. Ramirez-Cano and J. Pitt

Wireless Transmission Range

Mediator

Lucy’s
agent

Rita’s
agent

Michelle’s
agent

Provider

Enquirer

Fig. 1. Transient chains of communication

The agents communicate and interact but most importantly, share knowledge
of the environment and exchange content. At the first level an agent is restricted
by its transmission range to peer-to-peer interactions only with nearby agents.
However we propose that this limitation can be overcome through transient
chains of communication and agents behaving as content providers and message
mediators. From the C2C scenario we can observe that Rita’s agent is able to
provide information to Lucy’s agent, who is completely outside its transmission
range, thanks to Michelle’s agent intervention as mediator(see Fig. 1). Due to the
concept of transient chains of communication the formation of social structures
is not constrained by physical boundaries.

The arrangement shown in Fig. 1 is a representative picture of a community
at a given instant. In reality we are dealing with a society in motion, ruled by
the same principles as an ad hoc network topology [11]. The connections are
dynamic, self-organizing and without any central authority. The nondetermin-
istic movement of the peers causes unfinished interactions and exchanges which
should have no influence on the stability of the society as far as the agents are
aware of this fact. However this movement facilitates unplanned situations which
create new opportunities.

3.2 Sociological Specifications

Socio-cognitive grids are possible due to the seamless integration and interactions
of human and artificial intelligences, namely people and software (agents). From
the scenarios we observe that these two types of intelligences interact in differ-
ent forms defining a typology of interpersonal connections: people-to-software,
software-to-software and people-to-people via software, as show in Fig. 2.

Let P be the domain of people, S be the domain of agents and E be the joint
domain of people and agents, we can then characterise the types of interpersonal
connections as follows:

Interactions : X says to Y , where X , Y : E

Associations : X&Y belong to Community Θ, where X , Y : S

Interpersonal
relations

: X is friend of Y , where X , Y : S

Emergent Structures of Social Exchange in Socio-cognitive Grids 79

AABBAAAA

AA BBPeople-People

via Software

People-Software People-Software

Software-Software

Fig. 2. Typology of interpersonal connections

The combinations of these forms of connection characterize the different ap-
plications. In Table 1 we show an instance of this typology in which we can see
how it differentiates our scenarios. In DRM, the economic transactions can be
completely handled by the interaction of agents. Moreover the agents are able
to extend the friendship between users by giving recommendations to agents
that belong to the same community. C2C implies traditional people-to-people
interactions, however these interactions are extended via software agents which
increase the probability to match buyers with sellers as a result of maximizing the
amount of possible interactions. MUS is an all-inclusive application. Its essence
lies in the association of people with the desire to share something they know is
useful. The software is simply the medium to cooperate and create interpersonal
relationships.

From the inspection of the interpersonal relations between people and soft-
ware in the scenarios, we observe that social associations arise between members
of the socio-cognitive grids. We presume that as the associations grow they will
transform into complex social structures and interpersonal relationships. In order

Table 1. Typology applied to scenarios

DRM MUS C2C
People-Software John’s agent selected

a sample track for
him and then John
instructed his agent
to buy the song

Richard received the
critique of the flat
from George’s agent

Lucy instructed her
agent to ask her
friends for available
accommodation

Software-Software John’s agent bought
the song from the
record shop agent

Richard’s agent
found George’s agent
through the agent
mediators

Michelle’s agent in-
troduced Lucy’s to
Rita’s agent

People-People via
software

John recommended
the purchased song
to his friends, by way
of their respective
agents

George helped
Richard as a result
of the review that
George programmed
on his agent

Lucy met Rita
thanks to Michelle’s
agent

80 D. Ramirez-Cano and J. Pitt

to examine the emergent properties of the socio-cognitive grids we need a theory
that will help us understand the dynamics of social integration and support in
social structures.

4 Theory of Social Structures

In order to investigate the principles and motivations that lead to the formation
of stable and scalable social structures in the socio-cognitive grids, we borrow
the concept of social structure specified by classic exchange theorists from the
field of sociology and defined in [12] as: “... a configuration of social relations
among actors (both individual and corporate), where the relations involve the
exchange of valued items (which can be material, informational, symbolic, etc).”
This exchange of valued items is referred to as social exchange and is described
by Blau [13] as “...voluntary actions of individuals that are motivated by the
returns they are expected to bring and typically do in fact bring from others.”

We adapt the concepts mentioned above to build a conceptualization of mu-
tual exchange of digital content and support in the socio-cognitive grids, based
on the anthropomorphism of social exchange between people-agent and agent-
agent. The purpose of such anthropomorphism is not to replicate the complex
behaviour of human social relations or to create simulations of human societies
but to structure a formal framework capable of understanding how individual
behaviour, decisions and interests affect the dynamics of the construction of
social structures. We now describe those individual elements that, we suggest,
generate preferable societies in which intelligences want to stay and to which
others desire to belong.

4.1 Reciprocity in Social Exchange

According to Blau’s notion of social exchange once someone receives a favour,
assistance, information or any kind of service, he or she is implicitly obligated to
return the favour. We consider that the concept of obligation is not necessarily
(although it might be) enforced by legal bindings or a written contract but it is
a voluntary return encouraged by the interest to:

– increase the probability of finding someone who is willing to help you when
needed

– acquire reputation and recognition by the community
– contribute to the operation of efficient networks of social support

The dynamics of the society dictate reciprocity. An agent who gives some-
thing expects to receive something in return. If the received content is of high
value then the agent will seek to give something again in order to receive more of
that high valued content. On the other hand an agent who gives something but
receives nothing in return or low-valued content will therefore be disappointed
and will lose the motivation for any further reciprocal interaction.

At this point it is important to make the same clarification proposed by
Blau between economic exchange and social exchange. An economic exchange

Emergent Structures of Social Exchange in Socio-cognitive Grids 81

is the formal exchange of content which is priced in advance at a specific value
and thus an agreed value of the return, namely payment, is expected. Economic
exchange does not entail reciprocity or voluntary returns. On the other hand
social exchange suggests the bestowing of content with the promise of receiving
something in return. In our study we assume socio-cognitive grids with the ability
to support the existence of both economic and social exchange. e.g. DRM implies
an economic exchange of digital data plus the appropriate digital rights for an
economic remuneration. However, as we have describe in the DRM scenario,
even in this kind of application both parties can benefit from an underlying
social exchange of recommendations, reviews and opinions.

4.2 Social Networking

So far we have analysed the dynamics of the socio-cognitive grids from the per-
spective of an individual, from the inside to the outside. Now we move towards
an external perspective to examine the formation and dissolution of societies,
agreement and dissension and the general characteristics of networks of social
exchange. We adopt Cook and Emerson’s conceptualization of an exchange net-
work which is defined [14] “as consisting of (1) a set of actors (either natural
persons or corporate groups), (2) a distribution of valued resources among those
actors, (3) for each actor a set of exchange opportunities with other actors in the
network, (4) a set of historically developed and utilized exchange opportunities
called exchange relations into a single network structure”. From this definition
it is possible to examine exchange networks in agent societies from the following
perspectives:

– The creation of roles and the distribution of power understood as the in-
fluence that one agent exerts on the society and the degree to which others
depend on it

– The distribution of the resources and the position of the agents in the network
– The association of agents sharing common believes and the consequent iso-

lation from the society or the implementation of strict admission policies
– The factors that influence the formation, perpetuation, disintegration and

isolation of social networks

However we believe the above perspectives are just an initial instance of a
considerable range of approaches to the study of networks of social exchange in
socio-cognitive grids.

5 Evaluation

We have proposed the adaptation of the classical theory of social structures
based on social exchange as a framework to understand social interactions and
associations in socio-cognitive grids. To evaluate the concepts discussed in Sec-
tions 3 and 4 we believe it is necessary to build a software simulation of the
scenarios previously discussed. In this section we present the building blocks of
such a simulator: data structures for social memory, an algorithm for updating
social memory and a representation of the flow of content.

82 D. Ramirez-Cano and J. Pitt

5.1 Social Memory

We have discussed how important it is that an individual remembers its actions
towards every person in the society and the rewards obtained in return for its
actions. The duality actions-returns can be used to build an assessment about the
type and quality of each specific relationship. Furthermore, in order to transpose
these notions to an artificial society of agents, we suggest to design agents with a
structure that will allow them to remember all the interactions or exchanges with
other members of the society. We present two structures based on the actions and
returns described by Blau and on the roles of mediator and provider introduced
in Section 3.1:
provider(Name, PP, MPP, Loc p) mediator(Name, MP, MMP, Loc m, TS)

Name: Name of the agent Name: Name of the agent
which provided the content which mediated the content
PP: Provider Points MP: Mediator Points
MPP: Mirror Provider Points MMP: Mirror Mediator Points
Loc p: List of content from providers Loc m:List of content from mediators

TS: Time Stamp

Loc p=content(Date, Subject, Rating) Loc m=content(Date, Subject)

Date: Date of the interaction Date: Date of the interaction
Subject: Description of the content Subject: Description of the content
Rating: Rating given to the content

The structures are very similar and they are both built upon the same prin-
ciple of social exchange. However, as will be described in Section 5.2, the algo-
rithms and criteria to update the provider and mediator points are different. In
both, the field Name records the identity of the interacting agent. The field PP
reflects the opinion that the agent has about another agent, based on the quality
of the content directly received from that agent (returns). Similarly the field MP
shows an assessment of other agents but not as direct provider, instead function-
ing as a mediator through which the agent receives the content. The fields MPP
and MMP are estimated in the same way as PP and MP respectively but they are
a self-assessment of the behaviour (as provider or mediator) towards other agents
(actions). The structure for mediators has an extra field labelled TS which con-
tains a time stamp of the last interaction with every agent. As will be discussed
in Section 5.2, TS is used as a time reference to calculate the value of MP and
MMP. The provider and mediator structures give every agent a social memory
which can be used to evaluate the relationship with other members of the com-
munity and make decisions about the level of cooperation with each individual.

Based on the principles of social networking previously discussed in Section
4.2, it is also convenient to equip the agents with the ability to remember the set
of historically developed exchange opportunities. The fields Loc p and Loc m al-
low for a List of Concepts that contains the type and description (Subject) of the
historically exchanged content; and the Date of the interaction. Additionally, for

Emergent Structures of Social Exchange in Socio-cognitive Grids 83

the list of providers, the evaluation of the content is included in the form of a Rat-
ing which is needed to calculate the value of PP and MPP. In turn these values
are used as the main parameters for the selection criterion to choose recipients.

5.2 Updating Social Memory

The values of PP, MP, MPP and MMP are dynamically updated with every
applicable interaction. They are always a number in the range between 0 and
1 anticipating a future exploration of probabilistic models in the algorithms for
updating social memory and flow of content.

The process to update the value of PP and MPP is the weighted sum
NewV alue = ω1h1 +ω2h2. In the equation, h1 is the same evaluation of content
or Rating introduced in Section 5.1. h2 is called the Friendship level and it is a
method to express the appreciation towards the interacting agent. The support-
ing premise states that it is difficult to prove to be friend, thus new relations
are slow to build even if the exchanged content is good. However once a thresh-
old is reached and therefore the status of friend acquired then errors are easily
forgiven and favours highly appreciated. The friendship level (y) is defined as
an exponential transformation given by the equation y = Cekx − C where x is
the old value of PP or MPP before the new interaction; C and k are constants
defined according to friendship thresholds in the user’s profile. Finally ω1 and
ω2 are weights assigned to the rating and friendship level and vary according to
the agent implementation and user’s profile.

On the other hand, the process of updating the value of MP and MMP is
based on the assumption that usually a relationship deteriorates with time unless
it is constantly nourished. This degradation is represented using a time decay
function. The shape of the function is defined by the user profile. However it is
suggested, as a first approach, that the desired time decay function follows the
path of an exponential decay function which takes the difference between the
current time and the time stamp TS as its main variable. On the contrary, every
new interaction increases again the value of MP and MMP. For consistency, we
suggest that the increase rate should be defined using the same principle and
function used to calculate the previously defined Friendship level.

5.3 Flow of Content

From the scenarios of Section 2 we observe that while Richard wants to reach as
many people as possible so that the probability of receiving specific information
about the flat is higher, Lucy on the other hand is going to share a house therefore
she wants to ask only people she trusts, namely her friends. On this basis we de-
fine two methods of selecting recipients: Broadcast and Limited. Broadcast is the
propagation of the request to reach as many recipients as possible whereas Lim-
ited implies a specific selection criterion which Homans [15] suggests is directly
related to the value of the exchanged content and the probability of obtaining
it: “In choosing between alternative actions, a person will choose that one for
which, as perceived by him at the time, the value (degree of reward) V, of the

84 D. Ramirez-Cano and J. Pitt

result, multiplied by the probability, p, of getting the result, is the greater”. We
propose that every agent is motivated to choose recipients by different priorities
and the ensemble of all these possibilities characterises the profile of the society.

However it is possible to define the variables to be considered when making
a selection. The main purpose of every selection is to maximize the benefit and
the probability of obtaining it. Generalizing a simple interaction between two
agents, namely A and B, the probability that an agent A will choose agent B
as a recipient is determined by: (i) the quality of the relationship between them
(defined by PP), (ii) the probability that agent B would have the answer (defined
by Loc p) and (iii) the probability agent B will provide agent A with the answer
given that agent B has the answer (defined by a condition of reciprocity between
PP and MPP).

On the other hand the probability that agent B will respond to agent A
is also given by a condition of reciprocity between PP and MPP (or MP and
MMP in the case where agent B does not have the answer but knows agent
C who might have it). We anticipate that this condition of reciprocity will be
similar to the well known cooperation strategy TIT FOR TAT [16]; but to find
the conditions that lead to stable interactions and scalable societies is precisely
the purpose of the simulation.

6 Discussion and Further Work

In this paper we have discussed the idea of interpersonal relations, social struc-
tures and cooperation within the framework of socio-cognitive grids. We bor-
rowed concepts from the sociological classical theory of interpersonal relation-
ships and social structures. We recognize that social exchange and social net-
working are the building blocks of stable socio-cognitive grids. We suggest that
societies within the socio-cognitive grids will build social relations based on the
exchange of valued items and the creation of social networks. Furthermore this
social exchange should be self-regulated by social norms, such as reciprocity, that
emerge from within the society. From this point on we are now interested in four
main paths: (i) the evaluation of these propositions through the construction of
a software simulation based on the outline given in Section 5, (ii) the logical for-
malization of the social relations that shape the social structures, (iii) a deeper
exploration of the utilized sociological theories and the incorporation of more
complex social relations and (iv) the incorporation of the ideas of digital blush,
shame and embarrassment [17] as new mechanisms of self-regulation.

Acknowledgements

This work has been supported by the National Council for Science and Technol-
ogy in Mexico (CONACYT) and the EPSRC project ‘Theory and Technology
of Norm-Governed Self-Organising Networks’ (GR/S74911/01).

Emergent Structures of Social Exchange in Socio-cognitive Grids 85

References

1. Yu, B., Singh, M.P.: Searching social networks. In: Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems.
(2003) 65 – 72

2. Berman, F., Fox, G., Hey, T.: Grid Computing: Making the Global Infrastructure
a Reality. Wiley (2003)

3. EuroGrid and Grid Interoperability (GRIP). http://www.eurogrid.org (2004)
4. The Globus Alliance. http://www.globus.org (2004)
5. Intelligent Information Interfaces. http://www.i3net.org/ (2004)
6. de Bruijn, O., Stathis, K.: Socio-cognitive grids: The net as a universal human

resource. In: Proceedings of Tales of the Dissapearing Computing. (2003)
7. Hey, T., Trefethen, A.: The UK e-Science core programme and the grid. Future

Generation Computing Systems (FGCS) 18 (2002) 1017–1031
8. Pitt, J., Mamdani, A., Charlton, P.: The open agent society and its enemies: a

position statement and research programme. Telematics and Informatics 18 (2001)
67–87

9. van der Pluijm, H.: Pay once, share often with LWDRM. http://www.wired.com/
news/digiwood/0,1412,62739,00.html (2004) Wired News.

10. Kurumatani, K.: Mass user support by social coordination among users. In Kuru-
matani, K., Chen, S., Ohuchi, A., eds.: Proceedings IJCAI-03 Workshop on Mul-
tiagent for Mass User Support. (2003) 58–59

11. Wu, J., Stojmenovic, I.: Ad hoc networks. IEEE Computer 18 (2004) 29–31
12. Cook, K.S., Whitmeyer, J.M.: Two approaches to social structure: Exchange theory

and network analysis. Annual Review of Sociology 18 (1992) 109–127
13. Blau, P.M.: Exchange and Power in Social Life. John Wiley and Sons (1964)
14. Cook, K.S., Emerson, R.M., Gillmore, M.R.: The distribution of power in exchange

networks: Theory and experimental results. The American Journal of Sociology
89 (1983) 275–305

15. Homans, G.C.: Social Behaviour. revised edn. Harcourt-Brace (1974)
16. Axelrod, R.: The Evolution of Cooperation. Basic Books (1984)
17. Pitt, J.: Digital blush: towards shame and embarrassment in multi-agent informa-

tion trading applications. Cognition, Technology and Work 6 (2004) 23–36

Permission and Authorization in Policies
for Virtual Communities of Agents

Guido Boella1 and Leendert van der Torre2

1 Dipartimento di Informatica - Università di Torino-Italy
guido@di.unito.it

2 CWI Amsterdam and TU-Delft - The Netherlands
torre@cwi.nl

Abstract. We study the design of policies for virtual communities of agents
based on peer-to-peer systems or the grid infrastructure. In a virtual community
agents can play both the role of resource consumers and the role of resource
providers. Moreover, the agents remain in control of their resources, and there-
fore we distinguish between the authorization to access a resource given by the
virtual community and the permission to do so issued by the resource providers.
We propose a logical multiagent framework for virtual communities that distin-
guishes three roles: resource consumption, provision, as well as authorization.

1 Introduction

Peer-to-peer systems and the grid infrastructure allow to create virtual communities. For
example, Pearlman et al. [1] define a virtual community as a large, multi-institutional
group of individuals using a set of rules, a policy, to specify how to share their re-
sources, such as disk space, bandwidth, data, online services, etc. In order to control the
distributed nature of peer-to-peer or grid systems, policies are defined using norms, i.e.,
deontic notions like obligations, prohibitions and permissions. Inspiration comes from,
amongst others, computer security and distributed systems [2,3]. For example, in the
Kazaa file sharing system a user is obliged by the system to share files, otherwise his
bandwidth for downloading files is reduced as a sanction.

However, policies in virtual communities are more complex than policies in tradi-
tional distributed systems, due to the following reasons.

– Every agent in the community can play both the role of a resource consumer as
well as that of a resource provider. Resource providers retain the control of their
resources and they specify in local policies the conditions of use of their resources.

– When there is a central manager, it permits agents to access the resources which it
owns and controls, according to the policies defined by itself. In contrast, in virtual
communities, access control cannot be directly implemented, since nobody owns
all the resources.

– Resource providers implement local access control according to the community’s
security policies. However, they should not be overburdened by the task of updating
the policies as they change and new members join the community.

– Agents who participate to the community are heterogeneous and change frequently,
so they cannot be assumed to be always cooperative and to stick to the system

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 86–97, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Permission and Authorization in Policies for Virtual Communities of Agents 87

policies, concerning both requesting access to resources and providing access to
their resources.

The problem of designing policies for virtual communities has been raised recently,
e.g., by Pearlman et al. [1] and Sadighi Firozabadi and Sergot [4]. Pearlman et al. argue
that the solution is “to allow resource owners to grant access to blocks of resources
to a community as a whole, and let the community itself manage fine-grained access
control within that framework”. The centralized management of resources owned by
the single resource providers is performed by a Community Authorization Service (or
CAS): “A community runs a CAS server to keep track of its membership and fine-
grained access control policies. A user wishing to access community resources contacts
the CAS server, which delegates rights to the user based on the request and the user’s
role within the community. These rights are in the form of capabilities which users can
present at a resource to gain access on behalf of the community”.

In this paper we discuss the design of virtual communities policies composed by
prohibitions, permissions and authorizations. We address the following problems.

1. Is the task of authorizing requests performed by the CAS - henceforth called also
authority - identical to the task performed by a resource provider when it permits
access? How should permissions and authorizations be distinguished and how are
they related? What is the relation between the CAS and the resource providers?

2. How can a resource provider delegate to the CAS the power of authorizing resource
consumers and why can the power to issue permissions not be delegated?

We analyze these distinctions using our framework for normative multiagent sys-
tems [5]. As Jin and Liu [6] notice, multiagent systems “have been widely used in
peer-to-peer computing” and “it is regarded as a perfect match to integrate peer-to-peer
computing and agent-based systems, because since their inception, multiagent systems
have been always thought of as network of peers”. We extend the use of multiagent sys-
tems in peer-to-peer to normative multiagent systems, i.e., multiagent systems regulated
by norms.

We use the following example in this paper, based on Pearlman et al.’s description of
the process of accessing a resource in a virtual community. When a resource provider a3
wants to join a community, it informs the CAS a2, which replies with the requirements
on how its resource must be shared with the community. When a resource consumer
a1 wants to access the resource of agent a3, it must not only authenticate itself with
agent a2 providing its credentials, but it must also get a proof that its request conforms
to the community’s access policy. This proof is expressed by a capability (e.g., a X.509
certificate) provided by agent a2 to a1, which identifies the agent and states that it is
authorized to access the resource. Now, agent a1 can make the actual request to a3,
forwarding it the capability. After checking the truthfulness of the capability, agent a3
replies to a1. In a virtual community, agent a3 maintains the control of its resource: the
request is granted only if it is also permitted by the local policy of agent a3. Hence,
the authorization by agent a2 contained in the capability is not enough for agent a1’s
request being granted.

This paper is organized as follows. In Section 2 we discuss the notion of authoriza-
tion. In Section 3 we introduce the formal agent model with the definition of norms

88 G. Boella and L. van der Torre

(prohibitions and permissions), authorizations and delegation, which is illustrated by
the above scenario. In Section 4 we discuss the theoretical foundations of the design
and in Section 5 we summarize the results of the paper.

2 Authorization

A first cue that authorization and permission have different properties is found in the
ordinary use of the terms authorization and permission. E.g., for the Cambridge Ad-
vanced Learner’s Dictionary [7] permitting is “to allow something”, “to make it possi-
ble for someone to do something, or to not prevent something from happening”, while
authorizing means “to give someone official permission to do something”. Moreover,
dictionaries of law like [8] argue that authorizations and permissions are related but
different concepts, and that authorizations do not create new permissions.

In virtual communities, the authorization issued by the CAS is conceptually differ-
ent from the permission granted by the resource provider, because the power of issuing
permissions requires being in control of a resource. Resource providers delegate to the
CAS the power to issue authorizations, but not the power to issue permissions. The
notion of authorization to access a resource and the notion of permission should be
kept distinct to correctly model of the situation. Moreover, they should be kept apart to
prevent dangerous misunderstandings in the design of access policies.

Consider the following example. An agent a3 joins some virtual community; it will
both use the resources provided by the community, say downloading shared files, and
provide its resource to the other members of the community, say some of its disk space
to store files: agent a3 plays both the role of a resource consumer, c(a3), and that of a
resource provider, p(a3). Since agent p(a3) controls its disk space (it is the only one
who can decide that storing or retrieving files take place), it regulated the access to the
disk by means of some local policy: prohibitions and permissions. E.g., it prohibited to
read files during the day and it prohibited to store files exceeding 2.5Mb.

When agent a3 joins the community, it agrees that also some other members use its
disk space resource. In principle, agent p(a3) could modify the policy regulating the
access to its resource: e.g., by maintaining the prohibitions to read file during the day
and to store large files, and by adding the permission about which members of the com-
munity can store and retrieve files on its disk space. However, this solution imposes an
heavy burden. Even if the problem of authenticating which are the current users of the
community can be dealt with by some trusted third party who gives them e-certificates,
another problem remains: which members of the community are the ones which the
community currently wants that they can access the resource and under which condi-
tions they can do so. Moreover, the community’s access policies may change with time,
so that agent p(a3) should be kept informed and should modify the norms (prohibitions
and permissions) regulating access to the resource it owns. The complexity of modifi-
cations could also introduce unwanted errors in the access policy of agent p(a3).

What is needed is a solution which transfers the burden of managing the community
policies to other agents, playing the role of authorities, which have the knowledge and
resources to perform this task. However, it is impossible to say that the CAS u(a2)
changes the prohibitions and permissions posed by agent p(a3): in our model [5] norms

Permission and Authorization in Policies for Virtual Communities of Agents 89

are defined in terms of the goals which resource providers want to achieve concerning
the use of their resources. The difficulty is that nobody can change the goals of an
autonomous agent. Moreover, u(a2) is not in control of the resource so it cannot impose
sanctions to motivate the respect of prohibitions. Finally, agent p(a3) wants to preserve
its autonomy, so that it does not accept that someone else can change the prohibitions
and permissions regulating access to its resource.

The solution is that agent p(a3) creates a permission saying that authorized agents
can access the resource. But the decision to authorize agents to access the resource is
delegated to the CAS u(a2) which has up to date knowledge on the system policies and
members. Delegating the decision to authorize is easier than delegating permissions:
the authorization is not a goal of the agent p(a3) but just a belief which can be induced
by the CAS by issuing e-certificates and capabilities to the agents which are authorized.
Moreover, it does not require that the delegated agent is in control of the resource.

When the set of agents which can be authorized changes as a consequence of new
community policies, agent p(a3) does not have to change the prohibitions and permis-
sions regulating access: new authorizations are created when the CAS u(a2) issues new
capabilities (or, in our abstract terminology, u(a2) declares them authorized). The ca-
pabilities are recognized by agent p(a3) as the proof that the permission to access the
resource applies to a consumer c(a1) requesting access to it.

Authorizations, thus, are the means used by authorities like the CAS to regulate the
access of consumers to resources which they do not control. But there is no way to
make authorized users access a resource without a permission by the resource provider
which controls the resource: hence, authorizations are distinct from and presuppose
permissions. An authorization is useless unless the resource provider permits authorized
agents to access the resource it controls: authorizations change what is prohibited to an
agent and legitimate an action but without introducing or removing any prohibition and
permission.

Finally, nothing requires that agent u(a2), who is delegated the authority to autho-
rize other agents, is itself permitted nor authorized nor delegated to authorize itself.
The separation of institutional power from the permission to exercise it, identified by
Makinson [9], is important for virtual communities. An organization could, e.g., out-
source some administrative task such as assigning access rights to some agent without
allowing it to have those access rights. In summary, the key notions are:

Prohibition is defined as a goal of resource providers. This is paraphrased as: Your
wish (goal, desire) is my command (prohibition). The unfulfillment of the goal is
considered as a violation and is sanctioned.

Permission is behavior which not considered by a provider as a violation and thus it
is not sanctioned. The main role of permissions is to provide exceptions to prohibi-
tions in a given context.

Authorization is a belief of a provider which appears as a condition in some permis-
sion it issued.

Declaration of authorization is an action of an authority which states that an agent
can be considered authorized according to its own policy. Using Searle [10]’s ter-
minology, in [5], we say that a declaration generates an actual authorization if it
“counts as” an authorization for the resource provider.

90 G. Boella and L. van der Torre

Delegation establish who is considered as an authority. The declaration of someone
recognized as an authority turns into a belief of the resource provider that an agent
is authorized. A provider delegates the power to authorize to the CAS when it joins
the community.

3 A Formal Model

3.1 Individual Agent Design

In virtual communities there is no separation of resource providers from resource con-
sumers, and they can play the role of authorities too. So we introduce a single set of
agents, which can each play one or more roles. For the individual agent design we are
inspired by the BOID architecture [11]. However, in contrast to the BOID architecture,
prohibitions are not taken as primitive concept. Beliefs, desires and goals are repre-
sented by conditional rules.

Definition 1 (Agents). Let A = {a1, a2, . . . , an} be a set of n agents. An agent ai ∈ A
can play three roles:

1. Resource consumer, denoted as c(ai): it can access resources to achieve its goals,
is subject to norms regulating security, prohibitions and permissions, and also en-
dowed with authorizations to access resources.

2. Resource provider, denoted as p(ai): it can provide access to the resources it owns.
We call this the normative role, since it can issue norms, i.e., prohibitions and per-
missions about the access of a resource, and enforce their respect by means of
sanctions, and delegate the power to authorize resource consumers.

3. Authority, denoted as u(ai): it can declare resource consumers authorized when
they are requested to do so. They know that their declarations are considered as
authorizations by the resource providers since they have been delegated the power
to authorize resource consumers on behalf of resource providers.

Actions, represented by decision variables, can have conditional and indirect effects
with a non-monotonic character. We assume that the base language contains boolean
variables and logical connectives. The variables are either decision variables of an
agent, which represent the agent’s actions and whose truth value is directly determined
by it, or parameters, which describe the state of the world and whose truth value can
only be determined indirectly. Our terminology is borrowed from Lang et al. [12]. In-
stitutional facts, a subset of the parameters, represent the legal classification of reality
made by agents.

Definition 2 (Decisions). Let Ai = {m, m′, m′′, . . .}, the decision variables of ai ∈
A, and P = {p, p′, p′′, . . .}, the parameters, be n + 1 disjoint sets of propositional
variables. Let the institutional facts I be a subset of P . A literal is a variable or its
negation. di ⊆ Ai is a decision of agent ai.

The consequences of decisions are defined by the agent’s epistemic state, i.e. its
beliefs about the world: how a new state is constructed out of previous ones given a

Permission and Authorization in Policies for Virtual Communities of Agents 91

decision is expressed by a set of belief rules, denoted by Bi. Belief rules can conflict
and agents can deal with such conflicts in different ways. The epistemic state therefore
also contains an ordering on belief rules, denoted by ≥B

i , to resolve such conflicts.

Definition 3 (Epistemic states). Let a rule built from a set of literals be an ordered
sequence of literals l1, . . . , lr, l written as l1 ∧ . . . ∧ lr → l where r ≥ 0. If r = 0, then
we also write � → l. The epistemic state of agent ai, 1 ≤ i ≤ n, is σi = 〈Bi, ≥B

i 〉,
where Bi is a set of rules; ≥B

i is a transitive and reflexive relation on the powerset of
Bi containing at least the subset relation.

Example 1. Let s = {p} be the current state, d1 = {a}, B1 = {a → q, a ∧ p → ¬q}
and ≥B

1 = {a ∧ p → ¬q} > {a → q}: q is a consequence of action a, unless p
is true: the second rule is an exception to the first one. The new state resulting from
the decision d1 in state s given the belief rules B1 is {p, ¬q}: the applicable rules are
{a → q, a ∧ p → ¬q}, but since they are conflicting only the rule a ∧ p → ¬q with
higher priority in the ordering ≥B

1 is applied.

The agent’s motivational state contains two sets of rules for each agent. Desire (Di)
and goal (Gi) rules express the attitudes of the agent ai towards a given state, depending
on the context. When facing a conflict between their motivations, different agents prefer
to fulfill different goals and desires. We express these agent characteristics by a priority
relation on the rules which encode, as detailed in Broersen et al. [11], how the agent
resolves its conflicts.

Definition 4 (Motivational states). The motivational state Mi of agent ai 1 ≤ i ≤ n
is a tuple 〈Di, Gi, ≥i〉, where Di, Gi are sets of rules, ≥i is a transitive and reflexive
relation on the powerset of Di ∪ Gi containing at least the subset relation.

The decision process of an agent ai tries to minimize (according to the ordering ≥i

on goal and desire rules) the goal and desire rules in Gi and Di which remain unsatisfied
given a certain decision di.

Definition 5 (Unfulfilled motivational states). Let U(R, s) be the unfulfilled rules
of state s U(R, s)={l1∧. . .∧ln→l ∈ R | {l1, . . . , ln} ⊆ s and l �∈s} The unfulfilled
mental state description of agent ai is Ui = 〈UD

i = U(Di, s), UG
i = U(Gi, s)〉.

Example 2. Given 〈D1 = {� → z}, G1 = {� → x, y → w, z → u}, ≥1〉 as the
motivational state of agent a1, the unfulfilled motivational state of agent a1 in state
s = {x, y} is U1 = 〈UD

1 = {� → z}, UG
1 = {y → w}〉

In calculating which are the effects of a decision di given an initial state s, the
agent uses the belief rules Bi and the ordering on them ≥B

i to resolve the possible
conflicts. Moreover, agent ai must predict the decisions of the agents acting after itself
by recursively modelling ([13]) them using the information on their belief, goal and
desire rules captured by their motivational states. The reader can find the details of the
qualitative decision model in [5].

3.2 Norms

Prohibitions and permissions are defined in terms of goals and desires of the bearer
of the norm and of the normative role, together with two auxiliary concepts. The first

92 G. Boella and L. van der Torre

concept is violation. The normative role can decide whether something is considered a
violation or not.

Definition 6 (Violation variables). The violation variables of agent p(aj) are a subset
of the decision variables of p(aj) written as Vj={V i

j (x) | x a literal built out of a
propositional variable in P ∪ Ai }: x is a violation by agent c(ai).

The second concept is sanction. Since it is not possible to assume that all agents are
cooperative and respect the norms, sanctions provide motivations to fulfill the norms. A
sanction is an action negatively affecting an agent, i.e., the agent desires the absence of
the sanction.

Definition 7 (Conditional prohibition with sanction). Agent c(ai) is prohibited by
agent p(aj) to decide to do x (a literal built out of a variable in P ∪ Ai) with sanction
s (a propositional variable) under condition q (a proposition), F(i,j)(x, s | q), iff:

1. q → ¬x ∈ Gj : if agent p(aj) believes that q it has as a goal that agent c(ai) adopts
¬x as its decision.

2. q ∧ x → V i
j (x) ∈ Gj: if agent p(aj) believes that q ∧ x then it has the goal V i

j (x):
to recognize x as a violation done by agent c(ai).

3. V i
j (x) → s ∈ Gj : if agent p(aj) decides V i

j (x) then it has as a goal that it
sanctions agent c(ai).

4. � → ¬s ∈ Di: agent c(ai) has the desire not to be sanctioned.

A permission to do x is an exception to a prohibition to do x if agent p(aj) has the
goal that x does not count as a violation under some condition.

Definition 8 (Conditional permission). Agent c(ai) is permitted by agent p(aj) to
decide to do x (a literal built out of a propositional variable in P ∪Ai) under condition
q (a proposition), P(i,j)(x | q), iff q ∧ x → ¬V i

j (x) ∈ Gj: if agent p(aj) believes q ∧ x
then it wants that x is not considered a violation done by agent c(ai).

The permission overrides the prohibition if the goal that something does not count
as a violation (q ∧ x → ¬V i

j (x)) has higher priority in the ordering on goal and de-
sire rules ≥j with respect to the goal of a corresponding prohibition that x is con-
sidered as a violation (q ∧ x → V i

j (x)): ≥j⊇ {q ∧ x → ¬V i
j (x)} > {q ∧ x →

V i
j (x)}. We do not consider here the problem of how normative role’s characteristics

can be generated; e.g., see [14] for a discussion of the problem of the legal sources of
norms.

3.3 Resource, Authorization and Delegation

We introduce now the notion of resource, of control of a resource, of authorization and
delegation of the institutional power to authorize access to a resource. An agent who
manipulates a resource by means of some action is called a resource consumer:

Definition 9 (Resources). Let RS be a set of resources. Let RAj = {fj(r) | r ∈ RS}
be a set of resource actions of agent c(aj) on r ∈ RS.

Permission and Authorization in Policies for Virtual Communities of Agents 93

The possibility to punish violations by means of some sanction s is among the pre-
conditions for creating a prohibition; for this reason, it appears in the notion of control-
ling a resource, which is a precondition for issuing norms concerning access control.
An agent who controls a resource is a resource provider.

Definition 10 (Control of resource). Agent p(aj) controls a resource action fi of
agent c(ai) on resource r ∈ RS, controlj(fi(r)), iff Agent p(aj) can negatively in-
fluence agent c(ai) when it executes fi(r) by means of some decision variable or para-
meter which it can control s ∈ Aj ∪ P such that � → ¬s ∈ Di: agent c(ai) desires
not to be sanctioned.

As a particular case, s = ¬p can be a literal built out of a parameter representing
the failure of accessing a resource: e.g., reading a file has the desired effect of knowing
the content of the file, and blocking the reading action results in the impossibility of
knowing the information contained in the file. c(ai) believes that p(aj) with m ∈ Aj

prevents to achieve the effect p of fi(r) which c(ai) desires; fi(r) → p ∈ Bi, � →
p ∈ Di and m has the effect ¬p: m → ¬p ∈ Bi and ≥B

i ⊇ {m → ¬p} > {fi(r) → p}.
Besides issuing norms, an agent which controls a resource can consider other agents

authorized to access the resource it controls; authorizations, are a legal classification of
reality for agents, and, thus, are represented by institutional facts:

Definition 11 (Authorizations). Let the institutional facts I contain a set of so-called
authorization variables: Hj={uj(fi(r)) | ai∈A and fi(r)∈RAi and controlj(fi(r))}
They are institutional facts representing that the resource provider p(aj) considers
agent c(ai) authorized to access r with action fi. An authorization has a meaning only
if it appears among the conditions of a permission.

Instead, declaring an agent authorized does not have the requirement to control a
resource.

Definition 12 (Declarations). Let the decision variables of agent u(ak) contain a set
of so-called declaration variables Tk = {gk(fi(r)) | ai ∈ A and fi(r) ∈ RAi}. Here
gk(fi(r)) means that agent u(ak) declares agent c(ai) authorized to access r with
action fi.

The point of declaring agents authorized is that a declaration generates an actual
authorization if it counts as an authorization for the normative role controlling the re-
source. An example of this relation is the fact that a signature by the head of the de-
partment on a purchase order counts as the institutional commitment of the department
to pay for that order: the head of the department has the institutional power to buy on
behalf of the department.

Definition 13 (Counts as relation). A decision variable x ∈ Ak of agent u(ak),
counts-as q, where q is a literal, for agent p(aj), counts-asj(x, q), only if x → q ∈ Bj:
agent p(aj) believes that x has q as a consequence.

An agent who has been delegated the institutional power to authorize access is called
an authority. It is not requested to control any resource.

94 G. Boella and L. van der Torre

CAS

Resource
producer

Resource
consumer

info_1(file) in G1

Del(g2..,u2..)

P(read1(file)|u3(read1..))

a1

g2(read1(file))

read1(file)

info1(file) /
not info1(file)

1

2

3

4
5

6

read1..->
 V(read1..) in G3

ask1(g2(read1(file)))

a2

a3

ask1(g2(read1..))
-> g2(read1..) in G2

Fig. 1. Requesting access

Definition 14 (Delegation of authorization). Agent u(ak) is delegated by agent p(aj)
the institutional power to authorize agent c(ai) to do fi(r) ∈ RAi by means of dec-
laration gk(fi(r)) ∈ Tk (uj(fi(r)) ∈ Hj), Del(k,j)(gk(fi(r)), uj(fi(r))), iff we have
counts-asj(gk(fi(r)), uj(fi(r))).

3.4 Applicative Scenarios

In this section we sketch an applicative scenario in our model in the context of a virtual
community. As shown in Figure 1 we have three agents: agent a3, a provider p(a3) of
resource f (a file), the resource consumer c(a1), and the CAS agent a2: an authority
u(a2). Agent p(a3) can block c(a1)’s attempt of accessing with action r1 (r1(f)) the
resource, since it is in control of the resource. When agent p(a3) joined the community
(step 1) it maintained the prohibition to access f (F(1,3)(r1(f), ¬info(f) | �)) but
it agreed to share r1(f) the resource with the other members of the community by
means of a permission to do r1(f). Unfortunately, p(a3) does not know which are
the current members (in this case whether agent a1 is a member) nor which is the
access policy of the community concerning the resource f which p(a3) is sharing. Thus,
agent p(a3) decides to consider what agent u(a2) says (or declares, in our terminology:
g2(r1(f)) ∈ T2) about c(a1)’s access to f as an authorization u3(r1(f)) by itself:
u(a2)’s action g2(r1(f)) counts as u3(r1(f)) ∈ H3 for p(a3). Then it permits agent
c(a1) to access only if it is authorized: P(1,3)(r1(f)|u3(r1(f))).

Agent c(a1) compares the different alternatives for achieving its goal of knowing
the content of the file info(f): requesting the resource by doing r1(f) alone (step 5)
or first asking agent u(a2) for a declaration (ask1(g2(r1(f))))(3) and then requesting
to access the resource (5). It knows that a request for access is considered as a viola-
tion V (r1(f), c(a1)) by agent p(a3) and, thus, sanctioned by negating the information
contained in the file (¬(info(f))). For this reason, it decides to ask agent u(a2) for
an authorization to access agent p(a3)’s resource. Agent u(a2) will provide c(a1) with
the declaration since it is a goal of the u(a2) to cooperate with resource providers in
enforcing the policy (ask1(g2(r1(f))) → g2(r1(f)) ∈ G2). Finally, agent c(a1) knows
that the declaration g2(r1(f)) of agent u(a2) is considered as an authorization u3(r1(f)
by agent p(a3): g2(r1(f)) → u3(r1(f)) ∈ B3.

Permission and Authorization in Policies for Virtual Communities of Agents 95

4 Related Work

This use of the terms right, authorization and permission as synonyms is frequent in
policies for managing access control in distributed systems (e.g., [15]). In this paper
we show why and how these concepts should be kept distinct in the context of virtual
communities.

The necessity of a fine grained analysis of the concepts of permission and autho-
rization in the security policy field is witnessed also by Sadighi Firozabadi and Sergot
[16] who argue that a mere permission given by the resource provider to access a re-
source which it controls must be distinguished from the entitlement to access the re-
source: an agent is entitled and not merely permitted when the policies regulating the
virtual community prohibit the resource provider not to permit the agent to access the
resource.

Another distinction comes from deontic logic. Jones and Sergot [17] distinguish
permissions from powers in the sense of having been delegated the institutional power
to do something: “when we say that the Head of Department is authorized1 to purchase
equipment, we mean first and foremost that he has been granted by the institution the
power to enter valid purchase agreements”. Instead, “sometimes when we say that an
agent is authorized to do such-and-such we mean no more than that he has been granted
permission to do it”.

Law studies argue that a further distinction must be drawn also in this last sense
of the term authorization as mere permission. The [8]’s dictionary of law argues that
adding or removing an authorization does not change the normative status of an agent
while a new permission does; i.e., authorizations do not change the norms (prohibitions
and permissions), an agent is subject to; rather, authorizations lift the legal obstacles
and limitations, thus legitimating an action of the agent: they change the sphere of
what is prohibited or permitted to the agent without adding or removing norms. This is
possible since norms have a conditional character so that what is currently considered as
a violation or not depends on which are the norms that have their conditions satisfied in
the current situation. The fact that authorizations do not modify the existing norms, but
change what is prohibited and permitted to an agent anyway, means that authorizations
enable the conditions of some permissions. Hence, the institutional power to authorize
can be delegated to other agents who do not directly control the resources, since creating
an authorization does not require to change prohibitions and permissions.

Some scholars argue, instead, that the power to create permissions can be dele-
gated. [18], for example, propose a framework where this power can be delegated as
any other power to create institutional facts. We show in this paper that once prohibi-
tions and permissions are not considered as primitive logical entities, the preconditions
for their creation emerge. When we define them in terms of goals of the normative role,
it emerges that controlling a resource is necessary for issuing a norm.

In Section 1, we highlighted that according to Cambridge Advanced Learner’s Dic-
tionary [7] officiality seems to be the first dimension distinguishing permissions from
authorizations: the official character of authorizations depends on the fact that they are

1 Note that Jones and Sergot use the term “authorization” in another sense with respect to this
paper, i.e., as a synonym of “having the institutional power”.

96 G. Boella and L. van der Torre

institutional facts, and this character distinguishes them from permissions; an autho-
rization is an institutional fact which appears among the conditions of some permission
issued by a normative role: if the normative role believes this fact, the permission is en-
abled so that what is permitted in the current situation is changed by the authorization.
The creation of institutional facts is a commonplace feature of legal systems and norm-
governed organizations. According to [17], “it is that particular agents are empowered
to create certain types of states by mean of the performance of specific types of acts.
Typically, the states created will have a normative character”.

An authority has been delegated the power to create an institutional fact if the
institution recognizes the authority’s action as counting as something else (as in Searle
[10]’s notion of construction of social reality). E.g., the fact that an authority declares an
agent authorized counts as an authorization by a normative role. For Jones and Sergot
[17], the counts as relation expresses the fact that a state of affairs or an action of an
agent “is a sufficient condition to guarantee that the institution creates some (usually
normative) state of affairs”. They suggest this relation can be considered as “constraints
of (operative in) [an] institution”, and they express them as conditionals embedded in a
modal operator.

5 Summary

We discuss policies for virtual communities based on peer-to-peer systems and the grid
infrastructure with a community authorization service (CAS). Pearlman et al. [1] use
the term ‘right’ both for the authorizations provided by the CAS and the permissions
granted by the resource providers: “the user effectively gets the intersection of the set of
rights granted to the community by the resource provider and the set of rights defined
by the capability granted to the user by the community.” We base our model on the
distinction of the notions of permission and authorization, which leads to three roles
for each agent: as a resource provider, a resource consumer and authority. The role
played by the CAS in virtual communities is formalized in terms of what we called the
authority role.

The task of authorizing requests performed by the authority CAS is not identical to
the task performed by a resource provider when it permits access. Permissions and au-
thorizations are distinguished, because authorizations can be delegated. They are related
to prohibitions by the resource providers. The relation between the CAS and resource
providers is that resource provides can be sanctioned. A resource provider can delegate
to the CAS the power of authorizing resource consumers by declarations. The power
to issue permissions cannot be delegated, because issuing permissions is restricted to
control of the resource.

There are several issues for further research. First, delegation of authorization
should be regulated,since not all authorities can be authorized themselves. Second, we
can model hierarchies of policies to represent norms issued by local resource providers
which can be constrained by obligations and permissions posed at the global level
[19,20]. In [5] we discuss the counts as relation and constitutive rules in normative
systems. Finally, in [21] we explore how to formalize our model using the standard
BDICTL logic [22] for agent verification.

Permission and Authorization in Policies for Virtual Communities of Agents 97

References

1. Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S.: A community authorization
service for group collaboration. In: Procs. of the IEEE 3rd International Workshop on Poli-
cies for Distributed Systems and Networks. (2002)

2. Moffett, J., Sloman, M.: Policy hierarchies for distributed systems management. IEEE
Journal of Selected Areas in Communications 11(9) (1993) 1404–1414

3. Samarati, P., De Capitani di Vimercati, S.: Access control: Policies, models, and mechanisms.
In Focardi, R., Gorrieri, R., eds.: Foundations of Security Analysis and Design LNCS 2171.
Springer Verlag, Berlin (2001)

4. Sadighi Firozabadi, B., Sergot, M.: Contractual access control. In: Procs. of Workshop of
Security Protocols, Cambridge (UK) (2002)

5. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative multiagent
systems. In: Procs. of KR’04. (2004) 255–265

6. Jin, X., Liu, J.: The dynamics of peer-to-peer tasks: an agent based perspective. In: Procs. of
Agents and Peer-to-peer Computing. (2004) 84–95

7. Press, C.U.: Advanced Cambridge Learners’ dictionary. Cambridge University Press (2002)
8. del Giudice, F.: Nuovo dizionario giuridico. Simone Editore (2001)
9. Makinson, D.: On the formal representation of rights relations. Journal of philosophical

Logic 15 (1986) 403–425
10. Searle, J.: The Construction of Social Reality. The Free Press, New York (1995)
11. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID archi-

tecture. Cognitive Science Quarterly 2(3-4) (2002) 428–447
12. Lang, J., van der Torre, L., Weydert, E.: Utilitarian desires. Autonomous Agents and Multi-

agent Systems (2002) 329–363
13. Gmytrasiewicz, P.J., Durfee, E.H.: Formalization of recursive modeling. In: Procs. of IC-

MAS’95. (1995) 125–132
14. Boella, G., van der Torre, L.: Permissions and obligations in hierarchical normative systems.

In: Procs. of ICAIL’03, ACM Press (2003) 109–118
15. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach to distributed

authorization. TISSEC 6(1) (2003) 128–171
16. Sadighi Firozabadi, B., Sergot, M.: Power and permission in security systems. In: Security

Protocols. Springer Verlag (1999) 48–53
17. Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Journal of IGPL

3 (1996) 427–443
18. Sadighi Firozabadi, B., Sergot, M., Bandmann, O.: Using authority certificates to create

management structures. In: Procs. of Workshop of Security Protocols. Volume 2467., Berlin,
Springer Verlag (2001) 134–145

19. Boella, G., van der Torre, L.: Local policies for the control of virtual communities. In: Procs.
of IEEE/WIC WI’03, IEEE Press (2003) 161–167

20. Boella, G., van der Torre, L.: Local vs global policies and centralized vs decentralized control
in virtual communities of agents. In: Procs. of WI’04. (2004)

21. Boella, G., van der Torre, L.: Game specification in normative multiagent system: the trias
politica. In: Procs. of IAT’04. (2004)

22. Rao, A.S., Georgeff, M.P.: Decision procedures for BDI logics. Journal of Logic and Com-
putation 8 (1998) 293–343

On Exploiting Agent Technology in the Design
of Peer-to-Peer Applications

Steven Willmott, Josep M. Pujol, and Ulises Cortés

Universitat Politècnica de Catalunya,
Llenguatges i Sistemes Informàtics,

Campus Nord, Módul C5-C6, C/Jordi Girona 1-3, Barcelona (08034), Spain
{steve, jmpujol, ia}@lsi.upc.es

Abstract. Peer-to-peer (P2P) architectures exhibit attractive proper-
ties for a wide range of real world systems. As a result they are in-
creasingly being applied in the design of applications ranging from high-
capacity file sharing and global scale distributed computing to business
team-ware. The objective of this paper is to outline a number of areas
in which Agent techniques for the management of social problems such
as decision making or fair trading amongst autonomous agents could be
used to help structure P2P actions. In particular we focus on approaches
from mechanism design, argumentation theory and norms / rules and
electronic institutions.

1 Introduction

Peer-to-peer (P2P) architectures exhibit attractive properties for a wide range
of real world systems. As a result they are increasingly being applied in the
design of applications ranging from high-capacity file sharing and global scale
distributed computing to business team-ware.

In addition their benefits however, P2P systems also fundamentally change
the networking paradigm used in an application often causing tensions with
other application goals such as security, predictability, performance guarantees,
billing and so forth. Some of these issues in particular arise due to the nature of
control, authority and ownership typical found in peer-to-peer systems:

– It is no longer possible to know exactly who is participating in the system.
– Participants in the system may change over time appearing and disappearing

without trace.
– There are generally no centrally controlled ’arbiters’ available to make au-

thoritative decisions.
– Nodes may not only fail - they may be actively trying to subvert the system.
– Nodes may not only behave maliciously by themselves - subgroups of them

may do so in a coordinated manner.

Each of these problems is not only technical but also social in nature [12] -
springing from the new found autonomy and decision making power of the peers
(actors) in the system. Whilst standard distributed systems engineering provides

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 98–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Exploiting Agent Technology in the Design of P2P Applications 99

some of the answers, much work relevant work can also be found in the Agent
and Multi-Agent Systems literature. The objective of this paper is to explore
how some of these more ’social’ P2P network issues could be addressed using
various paradigms / approaches from the Agent research community.

While there are already many good examples of the application of Agent
technology to P2P systems (such as many of the papers in previous editions of
the Agents and Peer-to-Peer Computing workshop itself), with the exception of
studies in the area of reputation and coordination [3] and others) the majority
of this work to date has focused primarily on algorithmic or infrastructural con-
cerns. In order to broaden this debate, in this paper we look at a number of other
areas of Agent technology which could also bring significant benefits but have
not been extensively applied to P2P systems as yet, these are mechanism design,
argumentation theory and notions of norms / laws and electronic institutions.
The paper is organised as follows:

– Section 2 briefly outlines some often positively and negatively perceived
properties of P2P architectures.

– Section 3 characterises typical P2P systems in terms of different potential
types of agent systems.

– Section 4 provides a number of example potential areas in which different
types of Agent technology might benefit P2P application design.

– Section 5 concludes the paper.

The paper is discursive in nature and is intended to act as a discussion starter
rather than an in-depth analysis of the issues involved.

2 The Good, The Bad and The Anti-social

While a certain amount of the interest in using P2P architectures in application
development might be attributable to hype or buzz, they clearly also present
key technical advantages beyond traditional client-server approaches for some
applications. Some of the most visible of these advantages include:

– Virtualised / transparent access to large-scale of distributed resources - in
particular computing resources. The SETI@Home search for extraterrestrial
life program being one of the best known examples. 1

– Low configuration / low maintenance application deployment through Self
organisation - such as the easy to install and maintain teamware applications
targeted by Groove Networks. 2

– High availability and fault tolerance through replication, distribution or the
extreme resilience of of power-law / scale-free topologies 3 such as the high-

1 http://setiathome.ssl.berkeley.edu/
2 http://www.groove.net/
3 Power law topologies are highly resistant to random errors (failures) for example,

although they can be more sensitive against directed errors (attacks). The high clus-
tering coefficient of power-law networks also favours the redundancy of connections
while improving communication: network diameter and average path length grow as
the log function of the size (number of nodes).

100 S. Willmott, J.M. Pujol, and U. Cortés

capacity content caching achieved by services such as AKAMAI and Bit-
Torrent. 4

– Anonymity for users and providers - such as the information sharing services
provided by the Freenet system which obfuscates the provider of information
by sharing it between many hosts. 5

– Explosive deployment and growth through peer download and installation -
such as the extremely rapid user growth exhibited by new services such as
Skype (a new-entrant global P2P voice-over-IP telephony service). 6

Each of these advantages could provide a decisive business advantage in
certain types of applications - allowing an enterprise to exploit a market and/or
establish itself in a way that would be impossible with conventional client server
approaches.

Inevitably however, adopting a P2P paradigm may also subject the subse-
quent application to a number of less desirable properties. Specific, well docu-
mented issues include:

– Management challenges - the deployed application can no-longer be directly
managed as a global whole (raising issues on how to guarantee Quality of
Service, perform maintenance / updates or even monitor its size).

– Network fragmentation - the network may become accidentally or deliber-
ately subdivided parts which are not interconnected causing fragmentation of
a service. Although service may degrade gracefully (showing robustness) by
functioning in the remaining sub-parts, a service provider may loose control
or contact with some parts of the network.

– Identity issues - the identity of users or systems connecting to the system
may not be known (potentially raising issues of accountability for actions,
fraud, trust and - in non-free services - of billing).

– Security / Subversion - malicious users or systems may be able to connect
to system and subvert it by exploiting the lack of centralised authorities to
monitor or control actions by its users.

– User/Provider conflict - the objectives of individual users / nodes may con-
flict with the global objectives of the network (e.g. users of file-sharing sys-
tems such as Gnutella benefit when finding files they would like, however
there is no obvious motivation other than altruism / reputation for serving
files).

While the first two issues might be considered standard networking or dis-
tributed systems issues the later issues are increasingly social in nature - since
they depend on the nature, objectives and eventual actions of individuals using
the application. Such problems arise in many classes of systems which are dis-
tributed (in ownership and/or space) and open - both of which hold in many
P2P systems. These issues therefore raise important questions about the design
4 http://bittorrent.com/
5 http://freenet.sourceforge.net
6 http://www.skype.com/

On Exploiting Agent Technology in the Design of P2P Applications 101

of P2P application that are generally not be present in their client-server ap-
proach. In some cases the issues may also make the choice of a P2P approach
inappropriate.

The remainder of this paper is dedicated to looking at how we might use
Agent technologies to help exploit some of the benefits of P2P systems whilst
mitigating or managing the downsides.

3 Peer-to-Peer Systems as Agent Systems

Before addressing which areas of Agent technology might be applicable to P2P
systems it seems worth spending some time examining the properties of P2P
systems in terms of typical Agent characterisations.

Informally, nodes in a P2P network can be characterised as fulfilling many
current definitions of Agenthood (see [14] for an overview) to a greater or lesser
degree. Arguably more important than the properties of each peer as an agent
however, are considerations of what type of Multi Agent System the application
corresponds to.

In the general case one would expect that:

– Peers are entirely autonomous: each individual peer could act in any way -
conceivably any code provided could have been entirely re-engineered by its
owner/user.

– However, peers are bound to a specific limited set of actions, protocols or
messages specified in the protocols defined for the application - that is they
are limited to an agreed set of social conventions which may be broad or
narrow.

– Rational behaviour cannot be guaranteed: an owner/user may have any num-
ber of external motivations for particular actions - some of which may not
correspond to rational actions in the system itself. On the other hand ratio-
nal action can be made more likely if:

• Significant participation costs are involved (or in particular if irrational
actions have direct costs).

• Commitments made during participation can be enforced.
– Cooperative behaviour cannot be assumed: the motivations for actions of

an individual user/peers are unlikely to be primarily for the social good -
but primarily for that user/peers’ own good. Obvious examples include the
phenomenon that systems such as Gnutella are dominated by so called free
riders [1] - the assumption of benevolence cannot be made.

– Out-of-band coalition formation and/or collusion is possible and likely: in
other words users/systems are likely to use additional communication chan-
nels invisible to application to coordinate their actions in groups when and
where this is of benefit.

– False name / identity participation is possible: in other words users may
create multiple identities (new P2P nodes) to participate in the system if
this could lead to financial/other benefits - such as influencing market prices
or manipulating trust/other social properties.

102 S. Willmott, J.M. Pujol, and U. Cortés

These properties unfortunately correspond to problems recognised as some
of the most complex and difficult to deal with in the Multi-Agent research liter-
ature. An analysis of the Multi-Agent Systems literature would show that only
a relatively small percentage of known results are directly valid for these condi-
tions.

Hence for applications which fit the above profile, engineering coherent be-
haviour amongst users of the P2P application is likely to be very challenging. On
the more positive side in some cases it might be possible to make some additional
assumptions on average over the whole population:

– Average rationality: that on average nodes/users act rationality, although
an individual may not (this could be justified for example in large market
scenarios with many users).

– Verifiable identity: that false name / fake identity problems can either be
excluded or at least made very rare (this could be justified in applications
which directly tie application participation to some other verified identity
mechanism such as digital certificates and/or corporate employee registra-
tions).

In other applications it may be possible to reduce the impact of other char-
acteristics. However in each application case it is important to capture the as-
sumptions which do and do not hold since they may fundamentally affect the
correct functioning of the system.

4 Where Can Agent Technologies Help?

In order to illustrate how Agent technologies might help in P2P application
design this section presents application examples coupled with a description of
how particular techniques from the Agent literature might be used.

The descriptions are intended to be examples only; however we hope that
they will be useful as food for thought for other potential domains / technology
application. The examples are:

1. Mechanism Design applied to P2P trading systems.
2. Argumentation / Negotiation schemas applied to P2P-Social Choice prob-

lems.
3. Electronic Institutions, Norms, Rules, Policy Languages applied to context

management in P2P ubiquitous computing problems.

Other diverse examples could include reputation and trust applied to social
networking systems or Agent Communication Language semantics applied to
interoperability amongst peers.

4.1 Peer-to-Peer Trading Systems and Mechanisms Design

P2P applications show great potential for trading or bargaining systems in which
users are able to purchase / exchange goods, services, information or other items.

On Exploiting Agent Technology in the Design of P2P Applications 103

Currently most well known Internet market applications such as EBAY for con-
sumers and a myriad of Business-to-Business trading systems are strongly cen-
tralised in nature; however there are strong reasons why P2P approaches might
be attractive: dis-intermediation of middle-players (potentially cutting out fees),
privacy (since no one entity knows about all transactions), robustness and speed
(reducing dependency on a single site) and others.

Unfortunately however, unlike in file-sharing systems where goods/services
are provided at near zero loss to the provider, trading systems require real eco-
nomic exchange. The subsequent potential for financial loss raises the obvious
question: how do we ensure that the rules in the application cannot be violated
or abused by one or more parties to defraud other parties? Standard responses
to this such as requiring users to register their identities or the appointment of
arbiters to regulate disputes quickly become unmanageable, can themselves be
defrauded (e.g. by identity theft) or begin to recreate centralised elements that
the application aimed to removed.

Although still in its infancy for strongly distributed systems the research
area of mechanism design [8] which brings together theories from economics and
multi-agent systems is extremely relevant here. Work by researchers such as
Toumas Sandholm and David Parkes traces the boundaries of:

– Which properties market systems conforming to a particular combination of
rules and protocols exhibit.

– Which strategies dominate under which conditions (and whether they are
desirable strategies such as telling the truth about valuations for goods or
not).

– The impact of potential market elements such as side payments (additional
financial exchange occurring between agents in a market which is not openly
carried out using the market itself).

4.2 Argumentation Based Negotiation Applied to Social Choice
Problems

A specific example of mechanism design which does not necessarily involve finan-
cial exchange is in the solution of social-choice problems. In these applications,
peers are required to provide opinions on a question such as the passing of a
law, the truth of a statement, the election of a particular agent to a social role
or something similar. This social choice generally needs to be made in such as a
way as to respect various definitions of fairness, speed (termination) and proof
against manipulation.

Mechanism design provides tools which analyse the properties of different
types of voting systems (see [4,5] for example). However, in cases where the full
mechanism cannot be analysed, the decisions cannot be made by simply weight of
opinion or the choices are not simple to enumerate (e.g. in deciding an arbitrary
set of facts that is true) other techniques may also help. The challenge in such
applications becomes: how can I structure interactions between peers in order to
reach a fair compromise?

104 S. Willmott, J.M. Pujol, and U. Cortés

An emerging area which could be applied here is that of Argumentation
theory [15,10,17] which provide methods and formalisms to structure dialogues
and conversation rules amongst agents in order to ensure properties such as:

– Valid deduction of facts, commitments or other statements from assertions
made by agents.

– Termination of the interaction.
– Allowing all agents to have their say - but preventing a vocal few drowning

out discussion.

Papers range of different ways of formalising conversation rules [18] to appli-
cations in choice problems such as systems for guiding democratic debate.

4.3 Ubiquitous Computing: Institutions, Organizations, Policies,
Rules and Norms

A further often cited application of P2P networked is the growing trend of view-
ing everyday objects (household appliances, mobile devices, clothes, vehicles or
almost anything) as augmented communicating devices - each with its own iden-
tity and networked functionality. Generically known as Ubiquitous Computing,
this vision relies on objects being fitted with small computational devices, net-
work capability and behaviour patterns which provide their owners with addi-
tional benefits such as information, control, remote activation and so forth [11].

The potential explosion in such devices and the complexity of their interac-
tions means that client-server architectures are generally expected to be over-
whelmed and unable to provide reasonable management of such systems. In par-
ticular challenges arise such as: given so many devices - how can we ensure they
do not clash with one another? How can we manage behavioural changes between
(for example) home, office and street? How can ensure particular behaviour is
enabled/disabled in situations when it may be dangerous?

A concrete example might be visiting a neighbour’s house bringing a wireless
enabled device - and having it automatically interact with the house systems /
objects 7 - changing its status to avoid clashes and being treated with care by
the local network as a potential security threat (e.g. unbeknown to the owner it
may have been infected with a computer virus). The resulting interactions are
highly non-trivial and in particular dependent on the context of the interaction
(home, office, street), the current world state (time, weather, malicious 3rd party
network activity), the device owners’ relationship and many other factors.

Whilst some relationships, rules and heuristics could be hard coded (such as
a process for deciding whether a new device is permitted to access the network),
as the number of rules and interactions grows the management problem looks
set to explode. Several areas of Multi-Agent Systems research can provide useful
tools in this respect:

– Techniques for modelling Norms, Rules, Laws an Electronic Institutions
[9,16].

7 See [6] for an office example.

On Exploiting Agent Technology in the Design of P2P Applications 105

– Coordination techniques based on declarative rules such as Shoham’s Social
Laws [20].

– Work on policy languages and models ([7] for example).

Each of these techniques describes collections of rules (from abstract to con-
crete), properties and other constraints on populations of agents: creating a
tangible social context which systems are governed by. Most importantly the
approaches are primarily declarative - allowing easy management of the rules
and the derivation of guaranteed properties for certain combinations of rules. In
a Ubiquitous Computing P2P system the approaches could be used to assign
contextual roles to peers, tracking their obligations and rights over time as they
change context (through motion or changes in the owner’s attitude for exam-
ple). Hence all devices are peers at one level (objects all have an identity and
the ability to act) but are dynamically structured into organisational structures
according to need.

This last scenario can also be seen as a superset of the previous two in
that market mechanism rules and/or argumentation schemas are often seen as
defining an institutional context (or applied in the context of a particular insti-
tution).

5 Conclusions

The abstract for the panel discussion held at the P2P-Agents workshop in New
York stated a number of challenges which the P2P systems (in particular for busi-
ness) faced including security, trust and reputation, representing business pro-
tocols, checking compliance, bootstrapping systems, and performance. On closer
analysis, P2P systems can arguably be recognised as having similar characteris-
tics as some of the hostile environments described in the Multi-Agent Systems
literature: peers are entirely autonomous, individual autonomy cannot be as-
sumed, out-of band collusion between peers is possible and so forth.

However even under these conditions work in areas such as Mechanism Design
and Norms/Institutions or structured Negotiation can potentially provide tools
for engineering predictable applications by analysing:

– The motivations of actors.
– The implicit and explicit social rules and properties of the systems.
– Which types of behaviour can monitored/guaranteed and which not.
– The relationship between in-band actions/interactions (those which form

part of the application) and those which might take place out-of-band (ex-
ternalities or group collusion for example).

Work on reputation in Agent based P2P systems already follows these lines
([3,13] and others) but we hope that the contents of the paper helps illustrate
that there may also be other elements of Multi-Agent system’s theory which can
address these more social P2P application issues.

106 S. Willmott, J.M. Pujol, and U. Cortés

Acknowledgements

This work was partly supported by the European Projects ASPIC 8, Prove-
nance (IST FP6-511085) and @lis technology net 9. The work also owes much
to discussions with colleagues in the Agentcities and openNet Initiatives.

Notwithstanding this the opinions expressed in the paper are those of the
authors and do not necessarily reflect those of other project participants.

Particular thanks go to the other panellists in the session (Sonia Bergamaschi,
Sandip Sen, Hector Garcia Molina) and the panel chair Munindar Singh.

References

1. Adar, E. and Huberman, B. A.: Free Riding on Gnutella Technical Report Xe-
rox Laboratories, 2000, Internet Ecologies Area. http://www.hpl.hp.com/research/
idl/papers/gnutella/gnutella.pdf

2. Atkinson, K., Bench-Capon, T. and McBurney, P.: PARMENIDES: Facilitat-
ing democratic debate. Third e-Government Conference (EGOV04), DEXA 2004,
Zaragoza, Spain, September 2004. Published in: R. Traunmuller (Editor): Lecture
Notes in Computer Science. Berlin, Germany: Springer.

3. Biswas, A., Sen, S. and Debnath, S.: Limiting Deception in a Group of Social
Agents Applied Artificial Intelligence, 14:785–797, 2000.

4. Conitzer, V. and Sandholm, T.: Complexity of Manipulating Elections with Few
Candidates. Applied Artificial Intelligence, 14:785–797, 2000. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), 2003.

5. Conitzer, V., Lang, J, and Sandholm, T.: How Many Candidates Are Needed to
Make Elections Hard to Manipulate? Applied Artificial Intelligence, 14:785–797,
2000. In Proceedings of the Conference on Theoretical Aspects of Rationality and
Knowledge (TARK), Bloomington, Indiana, 2003.

6. Chen, H., Finin, T., Joshi, A., Perich, F., Chakraborty, D. and Kagal, L.: Intelligent
Agents Meet the Semantic Web in Smart Spaces IEEE Internet Computing, to
appear, 2004.

7. Damianou, N., Dulay, N., Lupu, E. and Sloman, M.: The Ponder Policy Specifica-
tion Language Lecture Notes in Computer Science, 1995.

8. Dash, R., Jennings, N., and Parkes, D.: Mechanism Design: A Call to Arms Com-
putational, IEEE Intelligent Systems, November 2003, pages 40-47 (Special Issue
on Agents and Markets).

9. Dignum, F.: Autonomous Agents with Norms Artificial Intelligence and Law 7:69-
79, 1999.

10. Dung, P.: On the acceptability of Arguments and its fundamental role in the Non-
monotonic Reasoning, Logic Programming and N-Person Games Artificial Intelli-
gence 77, 2, pp 321-358, 1995.

11. Fitzmaurice, G.W., Ishii, H. and Buxton, W.: Bricks: Laying the Foundations for
Graspable User Interfaces CHI, pp 442-449, 1995.

12. Jennings, N. R.: Controlling Cooperative Problem Solving in Industrial Multi-
Agent Systems using Joint Intentions Artificial Intelligence 75, pp 195-240, 1995.

8 http://www.argumentation.org/
9 http://www.alis-technet.org

On Exploiting Agent Technology in the Design of P2P Applications 107

13. Jurca, R. and Faltings, B.: Towards Incentive-Compatible Reputation Manage-
ment. Trust, Reputation and Security: Theories and Practice, Lecture Notes in AI
2631, 2003, pp. 138-147.

14. Luck, M., McBurney, P. and Preist, C.: Agent Technology: Enabling Next Gen-
eration Computing January 2003, ISBN 0854 327886. http://www.agentlink.org/
roadmap/index.html

15. Kraus, S., Nirkhe M. and Sycara, K.P.: Reaching agreements through argumen-
tation: a logical model (Preliminary report) Proceedings of the 12th International
Workshop on Distributed Artificial Intelligence, Hidden Valley, Pennsylvania, pp
233–247, 1993.

16. Panchoco, O and Carmo, O.: A role based model for normative specification of
organised collective agency and agent interaction JAAMAS 6(2):145-183, 2003.

17. Parsons, S., Sierra, C. and Jennings, N.: Agents that Reason and Negotiate by
Arguing Journal of Logic and Computation, 8, 3, pp 261–292, 1998.

18. Parsons, S., McBurney, P. and Wooldridge, M.: The mechanics of some formal inter-
agent dialogues F. Dignum (Editor): Advances in Agent Communication. Lecture
Notes in Artificial Intelligence 2922. pp 329–348. Berlin, Springer. g

19. Sandholm, T.: Automated mechanism design: A New Application Area for Search
Algorithms In Proceedings of the International Conference on Principles and Prac-
tice of Constraint Programming (CP), 2003.

20. Shoham, Y. and Tenneholz, M.: On the synthesis of useful Social Laws for Agent
Societies. In proceedings AAAI-92, pp 276-281, 1992

Peer-to-Peer Semantic Integration of
XML and RDF Data Sources�

Isabel F. Cruz, Huiyong Xiao, and Feihong Hsu

Department of Computer Science,
University of Illinois at Chicago, USA

{ifc, hxiao, fhsu}@cs.uic.edu

Abstract. Peer-to-Peer (P2P) data management systems combine tra-
ditional schema-based integration techniques with the P2P infrastruc-
ture. In this paper, we propose a P2P data management framework
named PEPSINT that semantically integrates heterogeneous XML and
RDF data sources, using a hybrid architecture and a global-as-view ap-
proach. Our focus is on the query processing techniques over heteroge-
neous data. Queries in PEPSINT are expressed in XQuery and in RDQL.
We consider two types of queries, depending on whether the query is first
posed on the super peer or on one of the peers.

1 Introduction

The Semantic Web has been proposed to add semantics to web content and
to enable interoperability among heterogeneous data sources. Both Extensible
Markup Language (XML) and Resource Description Framework (RDF) can be
used to represent information on the Web. However, there exists a wide gap
between the two languages, since RDF data has domain structure (the concepts
and the relationships between concepts) while XML data has document structure
(the hierarchy of elements) [11].

An example is shown in Figure 1, in which the RDF schema R explicitly spec-
ifies two concepts, Book and Publisher, as well as the publishedBy relationship.
Figure 1 also shows two XML schemas S1 and S2. Each of these XML schemas
contains two concepts: book and author (equivalently denoted by article and
writer in S2). Conceptually, these two XML schemas are quite similar. Struc-
turally speaking, however, they are very different: S1 (book-centric schema) has
the author element nested under the book element, whereas S2 (author-centric
schema) has the article element nested under the writer element.

Furthermore, the wide diversity of possible XML schemas for a single con-
ceptual model also results in wide diversity for the XML queries. For instance,
a user who wants to “List all the publications” from two data sources corre-
sponding to S1 and S2 may write the XML path expressions, respectively, as
/books/book/@booktitle and /writers/writer/article/@title. We notice
� This research was supported in part by the National Science Foundation under

Awards EIA-0091489 and ITR IIS-0326284.

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 108–119, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Peer-to-Peer Semantic Integration of XML and RDF Data Sources 109

books

book *

author *
@booktitle

@name

writers

article *

@title
@fullname

writer *

books

book

author

"b1"

book

author

"b2"

"a1" "a3"

writers

writer

article

"a1" "a2"

"b1""a2"

A local XML schema S1 XML document D1

"books.xml"

writer writer

articlearticle

"b2"

"a3"

"b2"

A local XML schema S2 XML document D2

"writers.xml"

author

Book Publisher

Literal

ISBN

Literal

pulishedBy

booktitle

A local RDF schema R

Literal

name

local RDF data

Book Publisher

"b3"

ISBN

"0123456789"

pulishedBy

booktitle

"p1"

name

(Defined in namespace: http://examples.org/local#)

Fig. 1. An example of heterogeneous XML and RDF data sources

that although the two XML path expressions refer to semantically equivalent
concepts, they follow two distinct XML paths. In contrast, schemas defined on
the conceptual level (known as conceptual schemas or ontologies) are flat in doc-
ument structure, and therefore the user can formulate a query without consider-
ing the structure of the source (we refer to such queries as conceptual queries).
RDF Schema (RDFS), DAML+OIL, and OWL are examples of languages used
to create conceptual schemas.

There are currently several attempts to use conceptual schemas [1,2,8,9] and
conceptual queries [6,7] to overcome the problem of structural heterogeneities
among XML sources. In this paper, we propose a framework called PEPSINT
(PEer-to-Peer Semantic INTegration framework) to semantically integrate het-
erogeneous XML and RDF data sources in a P2P environment. We discuss the
architecture of PEPSINT, and present a solution for semantic integration and
query processing in the P2P heterogeneous environment. In brief, we make the
following contributions in this paper:

– We propose a P2P schema-based data management framework, PEPSINT,
built on a hybrid P2P architecture, in which the global RDF ontology (con-
structed using the global-as-view approach [13]) in the super peer behaves
not only as a central control point over the peers but also as a mediator for
query translation from peer to peer.

– For the purpose of semantic integration, we propose an approach that pre-
serves the domain structure of RDF and the document structure of XML.
Specifically, the semantic integration of XML and RDF data sources is im-
plemented at the schema level (through the schema matching process) and
at the instance level (through the query answering process).

– We also provide a set of query rewriting algorithms that can propagate a
user’s query across the heterogeneous XML or RDF data sources in PEPS-
INT. In our framework, mappings connect the peer to the super peer, thus
making query processing within the network transparent to a user in any
peer.

The paper is organized as follows. Section 2 gives a review of related work. In
Section 3 we describe the architecture of PEPS-INT and its main components.

110 I.F. Cruz, H. Xiao, and F. Hsu

Section 4 discusses schema-based integration of RDF sources and (structurally
dissimilar) XML sources. Query processing in PEPSINT is covered in Section 5.
Finally, we draw conclusions and discuss future work in Section 6.

2 Related Work

The research community has, to date, produced several P2P data management
systems that aim to enable interoperability among distributed heterogeneous
data sources.

The Edutella project [15] provides an RDF-based metadata infrastructure
for P2P networks based on the JXTA framework [10]. In Edutella, connections
between peers are encoded into a network topology known as the Edutella super-
peer topology, which is similar to the hybrid architecture used in PEPSINT. A
Datalog-based query exchange language called RDF-QEL is proposed to serve as
a common query interchange format. Thus a wrapper translates local query lan-
guages such as SQL and XPath into RDF-QEL. Edutella does not support XML
sources directly, though the RDF data sources may be serialized in XML format.

PeerDB [16] is an agent-based P2P data management system where each
peer holds a relational database. The metadata for relations that are sharable
with other peers is specified in a local export dictionary. Unlike PEPSINT, there
are no established mappings between peers. Thus, query reformulation between
peers in PeerDB is assisted by agents through a relation-matching strategy; this
is a process of matching the metadata between relations in different peers. XML
and RDF data are not considered in the current implementation of PeerDB.

SEWASIE [4] is another agent-based P2P system that aims to integrate In-
formation Nodes (SINodes), where each node acts as an autonomous mediator-
based system. It contains two types of agents: query agents that are responsible
for query processing and answering; and brokering agents (peers) that handle
the mappings between nodes. SEWASIE does not currently support RDF data
sources.

Hyperion [3] proposes an architecture for a P2P data management system
for relational databases (one stored at each peer). Similarly to PEPSINT, map-
ping tables and mapping expressions (mapping tables that allow variables) are
used to store connections between local schemas in peers. Unlike PEPSINT, only
relational data sources and relational queries are supported by Hyperion.

The Piazza system [11] is a P2P data management system that, like
PEPSINT, supports interoperation of both XML and RDF data sources. Fur-
thermore, both systems preserve document structure of XML sources during
interoperation of these sources. The differences from PEPSINT are: (1) Piazza
is based on the pure P2P architecture in which peers are connected directly,
whereas PEPSINT is built on top of a hybrid architecture with a super peer con-
taining the global ontology. This is a tradeoff between efficiency and autonomy
[4]. (2) Piazza uses a (declarative) XQuery-based mapping language for mediat-
ing between nodes, whereas PEPSINT utilizes mapping tables to store schema
correspondences, which we believe results in easier construction and maintenance
of mappings. (3) The Piazza system achieves its interoperability in a low-level

Peer-to-Peer Semantic Integration of XML and RDF Data Sources 111

mapping table
local
XML

schema

Global RDF
ontology

peer 1 super peer

mapping
table

local RDF
schema

mapping table

peer n

XML to
RDF

wrapper

local
XML

schema

peer i

mapping
table

XML to
RDF

wrapper

Query processing in
data-integration fashion

Query processing in
hybrid P2P fashion

Mapping process

Q1

Q2n'

Q2i'

Q2

Q11'

Q1i'

Q1n'

Fig. 2. The PEPSINT architecture

(syntactic) way, i.e., through the interoperability of XML and the XML serial-
ization of RDF. For this reason, the user has to write an RDF query in terms of
an XQuery. The query rewriting in Piazza is based on pattern matching between
an XQuery expression and the mappings. In contrast, PEPSINT supports RDF
queries at the conceptual level (RDQL), as well as XQuery. Query translation is
realized by a collection of query rewriting algorithms.

3 The PEPSINT Architecture

There are two types of P2P architectures [14]: the pure P2P architecture, in
which no central point of control exists and peers are autonomous but can com-
municate directly with each other; and the hybrid P2P architecture that contains
at least one central point of control. The global control point(s) maintain either
network control or the references to the remaining peers. Based on the hybrid
P2P architecture, PEPSINT contains two types of peers: the super peer, con-
taining the global RDF ontology, and the peers, containing local schemas and
local data sources. Each peer represents an autonomous information system and
connects with the super peer by establishing P2P mappings. As shown in Figure
2, the PEPSINT architecture has four main components.

XML to RDF Wrapper. Since XML is characterized by having a hierarchical
document structure while RDF has a flat document structure, it is hard for the
user to directly map a local XML schema to the global RDF ontology. To solve
this problem, an XML to RDF wrapper is used to transform the XML schema
into a local RDF schema, which is then mapped to the global ontology. This is a
process that conceptualizes the XML elements into RDF concepts while keeping
their nesting information (by using a specialized RDF property).

Local XML and RDF Schemas. The local XML and RDF schemas residing in
peers contain both data and metadata. For the purpose of semantic integration,
we represent a local RDF schema as a labeled digraph (from now on referred to

112 I.F. Cruz, H. Xiao, and F. Hsu

as RDF schema graph). The domain structure is explicitly represented by labeled
vertices (concepts) and labeled arcs (relationships between concepts). Likewise,
a local XML schema is represented as a labeled tree (from now on referred to as
XML schema tree) that specifies nesting relationships between labeled vertices
(elements).

Global RDF Ontology.The global RDF ontology in the super peer is a vir-
tual mediated schema integrated from distributed local RDF schemas (using the
global-as-view approach [13]). In PEPSINT, the global ontology has two roles:
(1) It provides the user with a uniform and complete view of data sources in the
distributed peers; and (2) it serves as a mediator for query translation from one
peer to other peers. The global RDF ontology is a fairly simple ontology—it does
not contain high-level axioms, such as those available to DAML+OIL or OWL.

Mapping Table. A mapping table stores mappings between local schemas and
the global ontology. Each mapping represents correspondences between concepts
of different local schemas and is stored (as an entry) in the mapping table. It is
easy to maintain the mappings by adding, deleting, or updating the entries. This
feature of the mapping table makes it well fit the dynamic nature of P2P envi-
ronments, in which data sources may be added or removed frequently. We use
XML path expressions to represent the elements contained in an XML schema,
and RDF path expressions to represent the concepts and relationships in an RDF
schema.

The operation of PEPSINT can be divided into two phases: mapping (or
design) phase and query (or runtime) phase, as respectively indicated by the
hollow arrowed lines and the solid and dashed arrowed lines in Figure 2. To
realize semantic integration of XML and RDF data sources, domain structure
and document structure must be preserved in both phases.

1. Mapping Phase. Whenever a new peer joins the PEPSINT network, the
peer gets registered and indexed in the super peer by establishing mappings from
its local schema to the global ontology. The mappings are established through a
process of schema matching 1 and stored in the mapping table of the peer. During
the process of schema matching, the global ontology is extended by integration of
the local schemas. As previously mentioned, the domain structure and document
structure of local schemas are encoded in the mappings.

2. Query Phase. PEPSINT provides two query processing modes. (1) In the
data-integration mode, the user poses a query (source query) on the global on-
tology in the super peer, which is then reformulated into multiple subqueries
(target queries) over the XML and RDF sources in the peers (one subquery for
each source). By executing the target queries and integrating their results, the
system returns an answer to the user at the site of the super peer. (2) In the

1 Schema matching is a basic problem in many database application domains, and
currently it must be performed manually. A taxonomy covering most of the existing
approaches to schema matching has been devised [17].

Peer-to-Peer Semantic Integration of XML and RDF Data Sources 113

hybrid P2P mode, the user can pose a source query on the local XML or RDF
source in some peer. Locally, the query will be executed on the local source to get
a local answer. Meanwhile, the source query is reformulated into a target query
over every other peer through transitive mappings (compositions of mappings
from the original peer to the super peer and mappings from the super peer to the
other target peers). By executing the target query, each peer returns an answer
to the original peer, called the remote answer. The local and remote answers are
integrated and returned to the user at the site of the originating peer.

Query translation is achieved by using the mappings in conjunction with
a collection of query rewriting algorithms. We discuss the mapping and query
phases in greater detail in Section 4 and Section 5, respectively. Running exam-
ples based on the schemas in Figure 1 will be used for illustration.

4 Mapping Process

In PEPSINT, the data sources residing at the peers may be either XML data
modeled by an XML schema language (e.g., XML Schema) or else RDF data
whose classes and properties are described using RDF Schema (RDFS). As pre-
viously mentioned, mappings between local schemas and the global ontology are
established by the schema matching process during the registration of a peer to
the super peer. The key operation in this process is the preservation of the do-
main structure of RDF sources and the document structure of the XML sources.

4.1 Mapping a Local RDF Schema to the Global RDF Ontology

Schema matching takes the global RDF ontology G (in the super peer) and a
local RDF schema R (in the peer) as the inputs and returns a set of mappings
M between the elements of G and the elements of R as the output. Meanwhile,
the global ontology is updated by merging or adding metadata from the local
RDF schema.

Elements in an RDF schema include concepts and roles (also known as classes
and properties in RDFS terminology). When matching the local RDF schema
with the global RDF ontology, for each element pL in the local RDF schema,
if there already exists in the global ontology a semantically equivalent element
pG, the two elements will be merged and a correspondence such as (pL, pG) will
be generated. Otherwise, the element pL will be copied into the global ontology

Book Author
rdfx:contains

Books
rdfx:contains

Literal

booktitle

Literal

name

WriterArticle
rdfx:contains

Writers
rdfx:contains

Literal

title

Literal

fullname

local RDF schema R1 local RDF schema R2

Fig. 3. RDF schemas transformed from the local XML schemas in Figure 1

114 I.F. Cruz, H. Xiao, and F. Hsu

Book AuthorBooks Authors
rdfx:contains

Literal

title

name

Literal

rdfx:contains

rdfx:contains

rdfx:contains

Publisher

ISBN

pulishedBy

Literal

Literal
name

Global RDF ontology G (defined in namespace: http://examples.org/global#)

RDF path RDF path XML path expressions XML path expressions
expressions in G expressions in R in S1 in S2

Books – /books –
Book Book /books/book /writers/writer/article
Book.title Book.booktitle /books/book/@booktitle /writers/writer/article/@title
Book.ISBN Book.ISBN – –
Book.publishedBy Book.publishedBy – –
Publisher Publisher – –
Publisher.name Publisher.name – –
Authors – – /writers
Author – /books/book/author /writers/writer
Author.name – /books/book/author/@name /writers/writer/@fullname

Fig. 4. The global RDF ontology and its mapping table

as pG, and a correspondence (pL, pG) will be generated as well. In [9], we have
defined a group of operations on the ontology to implement schema matching be-
tween two RDF schemas, e.g., merging of classes, merging of properties, merging
of relationships between classes, and copying a class and/or its properties.

4.2 Mapping a Local XML Schema to the Global RDF Ontology

By transforming the participating local XML schema into a local RDF schema,
we can convert the problem of matching an XML schema with the global ontology
into the problem of matching an RDF schema with the global ontology, which
is discussed in Section 4.1.

The schema transformation is carried out by the XML to RDF wrapper.
The XML to RDF wrapper converts XML attributes and simple elements to
RDF properties; it converts XML complex elements to RDF classes. The wrap-
per also encodes the element-attribute relationship and the element-subelement
relationship in XML schema respectively as the class-to-literal relationship and
the class-to-class relationship in the resulting RDF schema.

We choose to define a new, specialized RDF property rdfx:contains (the prefix
rdfx stands for the new name space “http://pepsint.org/rdfx#”) to explicitly
denote nesting relationships. In particular, given that two XML elements ei

(parent element) and ej (child element) are respectively converted into two RDF
classes, ci and cj , the property rdfx:contains of ci is then generated to connect
ci to cj . Figure 3 shows the resulting local RDF schemas R1 and R2 that are
respectively converted from the two XML schemas S1 and S2 shown in Figure 1.
Finally, the global ontology G integrated from S1, S2 and R (in Figure 1) and its
mapping table are shown in Figure 4. The grayed concepts or roles are the ones
merged from local sources. We notice that both the rdfx:contains property in G

Peer-to-Peer Semantic Integration of XML and RDF Data Sources 115

and the mappings in the mapping table encode the document structure of XML
sources, so that either of them can be exploited for tracking XML document
structure in future query translations.

5 Query Processing

5.1 Assumptions

For the simplicity of discussion, we make the following assumptions.
1. We assume the mappings from a local schema to the global ontology are

total, one-to-one mappings. On the other hand, the mappings from the global
ontology to the whole set of local schemas are total but not one-to-one mappings,
since a concept in the global ontology might be merged from multiple concepts
of different local schemas (as a result of schema matching). The mappings from
the global ontology to a single local schema are one-to-one but they may be
partial mappings, which means a query run at a local source may result in an
incomplete answer.

2. We also assume that XML queries conform to a subset of XQuery [5], which
we call PXQuery (Partial XQuery) in this paper. PXQuery consists of a non-
nested FLWR expression that includes four clauses: for, let, where, and return;
the where clause may only contain comparison operators. Other limitations of
PXQuery include: (1) Only a single XML document is involved in the query; (2)
No new XML fragments are introduced in the query; (3) The path expressions
contained in the clauses only use child axes; (4) No type declarations, functions,
order clauses, and predicate filters are used.

3. To represent RDF queries, we use RDQL, which uses an SQL-like syntax
[12]. RDQL consists of the following clauses: SELECT, FROM, WHERE, AND, and
USING. We assume only comparison operators are used in the AND clause of the
RDQL query. The FROM and USING clauses are not the focus of our attention
since they are not involved in query translation.

For the sake of convenience, we associate a PXQuery query Q with
(VQR , VQW , CQ), where VQR and VQW are the two sets that respectively con-
tain all XML path expressions in the return clause and in the where clause,
and CQ contains the constraints whose items are in the form of vRc, where
v ∈ VQW , c stands for a constant, and R is a comparison operator (e.g., =, <,
>, ≤, ≥, and �=). Likewise, we also associate an RDQL query Q with a triple
(PQS , PQW , CQ), where PQS and PQW respectively contain all RDF path ex-
pressions in the SELECT clause and in the WHERE clause, and CQ contains the
constraints whose items are in the form of pRc, where p ∈ PQW , c stands for a
constant, and R is a comparison operator.

5.2 Query Answering in Data Integration Mode

Query answering in data integration mode includes the following steps. We use
a running example for illustration.

1. Analyzing the source RDQL query to convert it from a string to a
triple Qin : (PQS

in
, PQW

in
, CQin). In order to get the RDF path expressions in PQS

in

116 I.F. Cruz, H. Xiao, and F. Hsu

and PQW
in

, we have to match the triple patterns (specified in the WHERE clause)
with the RDF graph corresponding to the local RDF schema. CQin contains
all the constraints specified in both the triple patterns of the WHERE clause and
the AND clause. Because of space limitations, we ignore the detailed process of
pattern matching in this paper.

Example 1. To “find the publications written by a1”, the user poses a query
over the global ontology as shown below on the left hand side (the prefix go
stands for the name space “http://examples.org/global#”, where the global
ontology is defined). The resulting Qin elements are listed on the right hand
side.

SELECT ?title PQS
in

={Book.title}
WHERE (?book, <go:title>, ?title), PQW

in
={Book, Book.title, Author,

(?book, <rdfx:contains>, ?author), Author.name}
(?author, <go:name>, ?name) CQin={(Author.name, eq, "a1")}

AND (?name eq "a1")

2. Rewriting the source query into target subqueries over the RDF
or XML sources, by applying the query rewriting algorithm: RDQL2RDQL or
RDQL2PXQuery (once for each source), which utilizes mapping information stored
in the mapping table of Figure 4. The output Qout of a query rewriting in
algorithm is a triple of the form (PQS

out
, PQW

out
, CQout) for the RDF source or

(VQR
out

, VQW
out

, CQout) for the XML source. From Qout, we can compose the tar-
get query that is executable over the local source. Below is the result of this step
for Example 1.

For the local RDF source R:
PQS

out
={Book.booktitle}, PQW

out
={Book, Book.booktitle}, CQout={}.

The target RDF query is: SELECT ?booktitle
WHERE (?book, <lo:booktitle>, ?booktitle)

For the local XML source S1:
VQR

out
={/books/book/@booktitle}, VQW

out
={/books/book, /books/book/@booktitle,

/books/book/author, /books/book/author/@name},
CQout={/books/book/author/@name, =, "a1"}.
The target XML query is: for $book in doc("books.xml")/books/book

where $book/author/@name = "a1"
return $book/@booktitle

For the local XML source S2:
VQR

out
={/writers/writer/article/@title}, VQW

out
={/writers/writer/article,

/writers/writer/article/@title, /writers/writer, /writers/writer/@fullname},
CQout={/writers/writer/@fullname, =, "a1"}.
The target XML query is: for $writer in doc("writers.xml")/writers/writer

where $writer/@fullname = "a1"
return $writer/article/@title

3. Building an answer to the source query (on the global ontology G)
by assembling the fragment results returned from local sources. We need to
not only union the fragments (returned from different sources) while removing

Peer-to-Peer Semantic Integration of XML and RDF Data Sources 117

identical records, but also join the records based on some common key attribute.
In addition, null values will be filled into the records that just partially cover
queried attributes. The result of an RDQL query is a table containing URIs or
string constants corresponding to the path expressions in the SELECT clause. For
example, the answer to the query of Example 1 is a table containing a single
tuple ("b1"), which is the union of results from S1 and S2. The record ("b3")
returned from R is filtered out since the target query over R loses the query
constraints in query rewriting, caused by the partial mappings from G to R (i.e.,
R has no correspondence for the class Author in G).

5.3 Query Answering in Hybrid P2P Mode

We only focus on the case of translating a source query in PXQuery from a peer
to all the other peers, since the translation of a source RDQL query is similar
to what is done in data integration mode (except for the transitive mappings).
Query answering in hybrid P2P mode includes the following steps.

1. Analyzing the source PXQuery query to convert it from a string to
a triple Qin : (VQR

in
, VQW

in
, CQin).

Example 2. To “list all the publications”, the user poses a query (over the local
source S1) as shown below on the left hand side. The resulting Qin components
are listed on the right hand side.

for $book in doc("books.xml")/books/book VQR
in

={/books/book}
return $book VQW

in
={}, CQin={}

2. Rewriting the source query into a target query over all the other
connected RDF or XML sources, by utilizing the query rewriting algorithm:
PXQuery2RDQL or PXQuery2PXQuery (once for each source) and the transitive
mappings between the original data source and the target data source. The
output of the query rewriting algorithm is a triple Qout : (VQR

out
, VQW

out
, CQout)

for the target XML data source or (PQS
out

, PQW
out

, CQout) for the target RDF data
source.

An XML query must take into account the document structure of the XML
source. The answer to an XML query is returned as a set of subtrees, each of
which is rooted from one of the queried nodes (i.e., vertices in VQR). For instance,
the answer to the XML query in Example 2 is the subtree rooted from book in
S1 (see Figure 1). Therefore, the query rewriting algorithm also outputs a tree
T with its children being the resulting subtrees of the answer. The result of this
step by following Example 2 is shown below.

For the local RDF source R:
PQS

out
={Book}, PQW

out
={}, CQout={}.

The target RDF query is:
SELECT ?book, ?title
WHERE (?book, <lo:booktitle>, ?title)

Book Publisher

Literal

ISBN

Literal

pulishedBy

booktitle

Literal

name

T

118 I.F. Cruz, H. Xiao, and F. Hsu

For the local XML source S2:
VQR

out
={/writers/writer/article},VQW

out
={}, CQout={}.

The target XML query is:
for $writer in doc("writers.xml")/writers/writer

for $article in $writer/article
return

<book booktitle="{$article/@title}">
<author name="{$writer/@fullname}"/>

</book>

writers

@title
@fullname

writer *
T

article *

3. Building an answer to the source query (against the original data
source) by computing the union of the local answer (returned from the orig-
inal queried peer) and the remote answers (returned from remote peers). To
construct the remote answers, different methods are used for queries that target
XML sources versus queries that target RDF sources. In the former case, be-
cause RDQL cannot represent document structure, the remote answer is built
by organizing (based on the structure specified by T) the instances returned
from executing the target RDQL query. Whereas in the latter case, the remote
answer is formed by simply executing the target PXQuery query that already
represents the same structure as specified by T . For Example 2, the final answer
to the source query is shown below, where the three resulting lines come from
the local sources S1, S2, and R, respectively.

<book booktitle="b1"> <author name="a1"> </book>
<book booktitle="b2"> <author name="a2"> <author name="a3"> </book>
<book booktitle="b4"> </book>

6 Conclusions and Future Work

In this paper, we propose a P2P schema-based data management framework
called PEPSINT. This framework aims to semantically integrate distributed het-
erogeneous XML and RDF data sources. We discuss the construction of the ar-
chitecture, maintenance of mappings, and query processing in PEPSINT. In par-
ticular, semantic integration is implemented at schema-level through the schema
matching process and at instance-level through the query answering process. A
key aspect in these two processes is the preservation of domain and document
structure, which is realized by extending the RDF metadata space and provid-
ing a set of query rewriting algorithms. Because of this preservation, the user
query can be correctly propagated across the heterogeneous XML and RDF data
sources in PEPSINT, so that information access within the network is transpar-
ent to the user.

As for future work, we will: (1) Develop a proof of correctness for the query
process. (2) Design and implement a semantic web application (e.g., for bibli-
ographic data exchange) in PEPSINT to validate and evaluate the system. (3)
Do a performance comparison of PEPSINT with other P2P data management
systems.

Peer-to-Peer Semantic Integration of XML and RDF Data Sources 119

References

1. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-Based Integration
of XML Web Resources. In Proceedings of the 1st International Semantic Web
Conference (ISWC 2002), pages 117–131, 2002.

2. B. Amann, I. Fundulaki, M. Scholl, C. Beeri, and A. Vercoustre. Mapping XML
Fragments to Community Web Ontologies. In Proceedings of the 4th International
Workshop on the Web and Databases (WebDB 2001), pages 97–102, 2001.

3. M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller, and J. My-
lopoulos. The Hyperion Project: From Data Integration to Data Coordination.
SIGMOD Record, 32(3):53–38, 2003.

4. S. Bergamaschi, F. Guerra, and M. Vincini. A Peer-to-Peer Information System
for the Semantic Web. In Proceedings of the International Workshop on Agents
and Peer-to-Peer Computing (AP2PC2003), July 2003.

5. S. Boag, D. Chamberlin, M. F. Fernández, J. R. D. Florescu, and J. Siméon.
XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery, W3C
Working Draft, August 2003.

6. S. D. Camillo, C. A. Heuser, and R. S. Mello. Querying Heterogeneous XML
Sources through a Conceptual Schema. In Proceedings of the 22nd International
Conference on Conceptual Modeling (ER2003), pages 186–199, 2003.

7. Y. Chen and P. Revesz. CXQuery: A Novel XML Query Language. In Proceedings
of International Conference on Advances in Infrastructure for Electronic Business,
Science, and Medicine on the Internet (SSGRR 2002w), 2002.

8. I. F. Cruz and H. Xiao. Using a Layered Approach for Interoperability on the
Semantic Web. In Fourth International Conference on Web Information Systems
Engineering (WISE’03), pages 221–232, Roma, Italy, December 2003.

9. I. F. Cruz, H. Xiao, and F. Hsu. An Ontology-based Framework for Semantic Inter-
operability between XML Sources. In Eighth International Database Engineering
& Applications Symposium (IDEAS 2004), July 2004. (To appear).

10. L. Gong. JXTA: A Network Programming Environment. IEEE Internet Comput-
ing, 5(3):88–95, May 2001.

11. A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data Management
Infrastructure for Semantic Web Applications. In Proceedings of the 12th Interna-
tional World Wide Web Conference (WWW2003), pages 556–567, 2003.

12. HP Labs. RDQL - RDF Data Query Language. http://www.hpl.hp.com/semweb/
rdql.htm.

13. M. Lenzerini. Data Integration: A Theoretical Perspective. In Proceedings of
the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS 2002), pages 233–246, Madison, Wisconsin, June 2002. ACM.

14. G. Moro, A. M. Ouksel, and C. Sartori. Agents and Peer-to-Peer Computing:
A Promising Combination of Paradigms. In Proceedings of the 1st International
Workshop of Agents and Peer-to-Peer Computing (AP2PC2002), pages 1–14, 2002.

15. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. EDUTELLA: A P2P Networking Infrastructure Based on RDF. In
Proceedings of the 11th International World Wide Web Conference (WWW2002),
2002.

16. W. S. Ng, B. C. Ooi, K. Tan, and A. Zhou. PeerDB: A P2P-based System for
Distributed Data Sharing. In Proceedings of the 19th International Conference on
Data Engineering (ICDE 2003), pages 633–644, 2003.

17. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB J., 10(4):334–350, 2001.

The SEWASIE Multi-agent System

Sonia Bergamaschi1, Pablo R. Fillottrani2, and Gionata Gelati1

1 Dipartimento di Ingegneria dell’Informazione,
Università di Modena e Reggio Emilia,
Via Vignolese 905, 41100 Modena, Italy

sonia.bergamaschi@unimo.it
jonathan.gelati@unimore.it
2 Faculty of Computer Science,

Free University of Bozen/Bolzano,
Piazza Domenicani 3, 39100 Bozen/Bolzano, Italy

fillottrani@inf.unibz.it

Abstract. Data integration, in the context of the web, faces new prob-
lems, due in particular to the heterogeneity of sources, to the fragmen-
tation of the information and to the absence of a unique way to struc-
ture, and view information. In such areas, the traditional paradigms on
which database foundations are based (i.e. client/server architecture, few
sources containing large information) have to be overcome by new archi-
tectures. In this paper we propose a layered P2P architecture for medi-
ator systems. Peers are information nodes which are coordinated by a
multi-agent system in order to allow distributed query processing.

1 Introduction

The advancing of the Internet has opened the access to an overwhelming amount
of data. While users can benefit of a vast information, data have an heteroge-
neous format and are sparsed over different places, making the search for data
a costly operation. Integration of heterogeneous information in the context of
the Internet becomes a key activity to enable a more organized and semantically
meaningful access to data sources. If we look at the Internet as a P2P data-
sharing system where peers are data sources, the challenge is twofold. First,
peers presents information according to their particular view of the matter, i.e.
each of them assumes a specific ontology. Second, data sources are usually iso-
lated, i.e. they do not share any topological information concerning the content
or the structure of other sources. The classical approach to solve these issues is
provided by mediator systems which aim at creating a unified virtual view of the
underlying data so as to hide the heterogeneity and distribution of data and give
users a coherent access to the integrated information. Traditional solutions focus
on the creation of one mediator system to integrate diverse data sources [1,2,3,4].
Our view is that next generation information systems will include a network of
mediator systems, where mediators are not isolated any longer and are organized
so that to share and map their ontologies. We propose here to use a P2P system

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 120–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The SEWASIE Multi-agent System 121

where peers are mediator systems and are supported by a multi-agent system
so as to propose users a mapped knowledge of the underlying ontologies. The
multi-agent system organizes the peer network so as peer ontologies are shared
and mapped. While single peers independently carry out their own integration
activities, they exchange knowledge with agents which provide a coherent access
to the underlying peer network. This defines two layers in the system: at local
level, peers maintain an integrated view of local sources, at network level agents
maintain mappings among the different peers. The result is the definition of a
new type of mediator system intended to operate in web economies, called the
SEWASIE system.

In section 2 we present the SEWASIE architecture and we explain how inte-
gration of information and query management work in section 3. The discussion
of related work is presented in section 4 and final remarks in section 5.

2 SEWASIE Architecture

In this section both the functional and deployment architecture of the SEWASIE
system are described.

2.1 The Functional Architecture

The SEWASIE architecture [5,6] is composed by a network of mediator systems
and a set of agents to support users querying the underlying peers as a unique
transparent data source (see Figure 1).

The mediator systems are the peers of the SEWASIE system and we call them
SEWASIE Information Nodes (SINodes). SINodes are mediator-based systems
[7], each including a Virtual Data Store, an Ontology Builder, and a Query Man-
ager. A Virtual Data Store represents a virtual view of the overall information
managed within an SINode and consists of the managed information sources,
wrappers, and a metadata repository. The managed information sources are
heterogeneous collections of structured, semi-structured, or unstructured data,
e.g. relational databases, XML/HTML or text documents and are accessible by
means of wrappers which are intended to translates to and from local access
languages. There is one wrapper linked to each information source. According to
the metadata provided by the wrappers, the Ontology Builder performs seman-
tic enrichment processes in order to create and maintain the current ontology
which is made up of the Global Virtual View (in short GVV), of the managed
sources and the mapping description between the GVV itself and the integrated
sources. Ontologies are built on a logical layer based on existing W3C stan-
dard. The Metadata Repository holds the ontology (GVV) and the knowledge
required to establish semantic inter-relationships between the SINode itself and
the neighbouring ones.

In order to support the network of peers in offering an integrated view over
their ontologies, a set of agents has been defined. These agents cover function-
alities required to keep knowledge of the topology of the system as well as the

122 S. Bergamaschi, P.R. Fillottrani, and J. Gelati

Fig. 1. The SEWASIE system architecture

semantical mappings that can be established among peers. The topology of the
system is used to know which SINodes participate to the SEWASIE network,
whether they are available in a certain moment to solve queries posed to the sys-
tem or request to update the ontology. The semantical mappings are exploited in
the query processing phase, where a query may involve more SINodes. More pre-
cisely, SEWASIE agents have four basic types: Brokering Agents, Query Agents,
Monitoring Agents and Communication Agents.

Brokering Agents are the peers responsible for maintaining a view of the
knowledge handled by the network. This view is maintained in ontology map-
pings, that are composed by the information on the specific content of the SIN-
odes which are registered by the brokering agent, and also by the information
on the content of other brokering agents. Thus, brokering agents must provide
means to publish the locally held information within the network.

Query Agents are the carriers of the user query from the user interface to the
SINodes, and have the task of solving a query by interacting with the brokering
agent network. Currently, query agents are able to interact with one brokering
agent. Future versions of the system will include query agents dealing with more
brokering agents. Once a brokering agent is contacted, it informs the query agent
which SINodes under its control contain relevant information for the query. Then,
the query agent asks the involved SINodes for collecting partial results. Also, it
decides whether to continue the search with the other brokering agents. Once
this process is over, all partial results are fused into a final answer to be delivered
to the user.

The SEWASIE Multi-agent System 123

A Query Tool Agent is part of the SEWASIE user interface. It includes a
query tool that guides the user in composing queries. A query tool agent is
responsible for contacting brokering agents in order to get ontologies and is also
responsible to manage the set of query agents required to solve users’ queries.

Monitoring Agents and Communication Agents provide user-oriented ser-
vices. Monitoring agents are responsible for monitoring information sources ac-
cording to user interests which are defined in monitoring profiles. Each mon-
itoring agent is assigned a specific topic of interest chosen by one user. Each
monitoring agent contains an internal ontology, i.e. a domain model, which is
linked to brokering agents ontologies. Agents of this type regularly set up query
agents to query the SEWASIE network, filter the results, and fill monitoring
repositories with observed documents.

A communication agent supports negotiation between one user and other
parties present in the SEWASIE network (usually parties that have exposed an
SINode). Any query including contact information sets the context to launch the
communication. Several types of communication agents can be created for one
communication each helping find and contact potential business partner, asking
for initial offers, and ranking them. The human negotiator can then decide and
choose the best offer to begin negotiating, with support from the communica-
tion tool. This latter maintains four types of agents, that can act in the different
phases of the negotiation [8]. The Initiation Agent tries to establish contacts with
potential partners according to the a user’s preferences. The Filtering and Rank-
ing Agent maintains the overview of the negotiation process (containing several
parallel negotiations) and provides support for decision making by calculating
the scores of received offers and ranking them. The main task of the Resource
Management Agent is to notify the user when resources lack. The Negotiation
Agent can act when the negotiation achieves a well structured and defined state.
In this case the Negotiation Agent tries to provide some offers depending on user
defined preferences and negotiation strategy.

2.2 System Deployment

So far we have presented the functional architecture of the system. We now want
to shortly describe its deploying architecture. The SEWASIE system is intended
to operate in networked environments where heterogeneity and distribution of
information is a reality. Peers, i.e. SINodes, expose their GVVs on the network
and software agents act as a glue among the different peers. Peers are recognised
as being part of the SEWASIE system as long as they register their GVVs by
a brokering agent. From a deployment view point, what is distributed is the
multi-agent system. As the scope of the SEWASIE project is to focus on the
application of software agents and not in providing a general toolkit for building
multi-agent systems, the choice was to use existing tools. The key features we
were looking for were:

– a high-level language, in order to focus on application programming;
– portability, in order to allow for multiple platforms to become part of the

SEWASIE system in a transparent way;

124 S. Bergamaschi, P.R. Fillottrani, and J. Gelati

– FIPA compliance, in order to be aligned with the current standards for agent
technology;

– support and maintenance, in order to meet deployment needs.

Currently, the number of alternative agent toolkits is quite good [9–17]. Our
choice felt on the Java Agent DEvelopment (JADE) developed by TILab [16].
JADE is currently one of the most evolving toolkits and is an open source.
JADE is written in Java [18] and exploits Java RMI [19] for managing software
distribution in the environment.

A JADE multi-agent system (or platform) is a logical space that can be dis-
tributed over diverse physical hosts. Each host participating to the platform has
its own Java Virtual Machine (JVM) running. Each JVM is an agent container,
i.e. a runtime environment that allows agents to concurrently execute. In order
to boot the platform, a main container has to be created. The main container
hosts the services necessary to support agents’ life cycle, migration and com-
munication. Containers eventually residing on remote hosts can be added to the
platform at runtime. No matter where containers are located, the agent platform
is seen as a uniform logical space, where all containers can be reached simply
knowing their name. Recently, JADE introduced the support for security as an
extension of the Java security model and in particular of the JAAS interface [20].
Besides the JADE security extension, we have exploited tunneling techniques in
order to address security issues related to network configurations. This has been
necessary to deploy the system in firewalled environments.

Tunnelling is a popular technique which permits to expose services on the
standard port of a web server. Client applications can then reach the service
by executing an HTTP request. The web server will redirect the request to the
particular service addressed. Responses are sent following the backward path.

Our deployment architecture foresees therefore that each host activates a
web server. The web server acts as a gate to the network environment. Messages
and objects to and from an agent container belonging to the platform are HTTP
requests going through the web server. This is made possible because Jade man-
ages remote objects and remote calls using Java RMI. When an RMI server is
activated, a registry to keep track of all (possibly remote) objects registered is
initiated which listen to incoming requests on a given port number. An RMI
client can call this service in order to remotely connect and use objects. The
web server can make accessible the RMI server in two ways either through a
CGI script or by means of a servlet activated in an application server. While
the CGI script requires less infrastructural component, the servlet offers higher
performance. This represents a tradeoff.

3 Integrating Knowledge and Querying

In this section we describe how the SEWASIE system comes into being and
which are the mechanisms required to maintain the system work, restricting our
attention on how information is integrated and how query processing happens.

The SEWASIE Multi-agent System 125

Fig. 2. SEWASIE integration and querying

3.1 Integrating Knowledge: SINodes and Brokering Agents

As we have seen in the previous section, data are actually stored in local data
sources managed by an SINode. Therefore, the first step towards integrating
data has to be undertaken at the level of SINodes (see lower part of Figure 2).
In order to create and maintain a global view of its information sources, SINodes
require an Ontology Builder. The Ontology Builder is the collective name of a
set of functionalities which support the creation and maintenance of the GVV
of an SINode. It helps synthesize ontologies and merging them into a GVV.
The building process begins with the creation of a Common Thesaurus of the
information provided by wrappers. The thesaurus is obtained by annotating the
schema of the sources and by inferring the terminological intensional and ex-
tensional relationships based on such annotations and describing intra-schema
knowledge about classes and attributes of each source schema. Based on such
information and on designer supplied relationships capturing specific domain
knowledge, the Ontology Builder module performs semi-automatic inter-schema
analysis by exploiting lexicon derived relationships (which are based on processes
like synonym identification or generalisation-specialisation relations) and by in-
ferring new relationships. All these relationships are considered in the subsequent
phase of ontology building, which performs hierarchical clustering and supports
the emergence of a number of global classes representative of all the classes com-
ing from the sources (the GVVs) and of a set of mappings between the GVV and
the local sources. A full description of the integration steps can be found in [4].

3.2 Glueing Peers

SINodes constitute the network of peers. By themselves peers are not aware of the
presence of other peers and have no capability to integrate external knowledge.
What activates the network are brokering agents. In order to be part of the
SEWASIE system, i.e. share the ontology with others, an SINode must register
with at least one brokering agent. This happens as follows. An SINode wishing

126 S. Bergamaschi, P.R. Fillottrani, and J. Gelati

to become part of a SEWASIE system links to the SEWASIE agent platform.
This is done by subscribing a newly created agent container and activating a new
SINode agent, responsible for interfacing the SINode with the SEWASIE agent
platform. These actions are usally undertaken by the SINode administrator.
The knowledge about the host (and port) on which the SEWASIE platform is
running is required. Alternative ways to interface an SINode with the SEWASIE
agent platform exist. For instance, we may use Web Services which interact with
the JADE platform as an external wrapped application1. The solution with an
SINode agent is the most flexible one as it makes available all the agent features
for interacting with an agent platform and other agents. In the following we will
refer to an SINode as an agent. The same mechanisms can be viewed as if a Web
Service was instead running.

Upon the arrival of some particular event (most likely the GVV has been
created and can now be exported to the network), the SINode starts the ad-
vertising phase, where it asks to the currently executing brokering agents to
integrate its GVV. Figure 3 depicts the AUML sequence diagram of the interac-
tion using templates [21]. The full list of available brokering agents is retrieved by
querying the Directory Facilitator service (DF). The DF is the standard JADE
yellow-pages service: agents can advertise to the DF their capabilites and keep
updated the information about their status. The list of brokering agents may be
further filtered according to selective parameters, such as the number of GVVs
already integrated by a brokering agent or to its workload. The SINode agent
will then contact the selected brokering agents requesting the integration of its
GVV. Brokering agents can decide whether to satify the request or not. This
phase ends successfully if at least one brokering agent accepts to integrate the
view. If unsuccessful, the SINode agent may have a later try. The accepting bro-
kering agents can now integrate the sent GVV. The module responsible for this
operation is called Map Keeper (see Figure 2). Integrating means building the
mappings among the diverse GVVs which have been collected by the brokering
agent. This activity is similar to the one carried out by SINodes when integrating
knowledge from different data sources. What is different now is that mappings
can be established more easily as each source schema is already represented in a
standard format and its semantics is expressed. The process configures thus as
automatic with few or no intervention from an ontology designer. A map keeper
keeps its own GVV built on top of the collected GVVs coming from SINodes.

In dynamic settings not only data stored in the sources can change but
schemas can evolve over time. Mechanisms on how changes in data source
schemas can be reflected in an existing GVV are under investigation [22,23].

3.3 Querying

The overall integration process results in brokering agents each producing a
GVV of the schema of the managed SINodes. An SINode can be managed by
more brokering agents. Users have access to the GVV of the brokering agents
1 JADE provides a specific package which handles the details of in-process JADE

management.

The SEWASIE Multi-agent System 127

Fig. 3. The AUML diagram of the interaction betweeen an SINode and brokering
agents

Fig. 4. The AUML diagram of the interaction occuring during the query solving phase

by means of the query tool agent interface. While navigating these views they
may also pose query. We now describe how query management is carried out in
the SEWASIE system with reference to a simplified architecture with a single
brokering agent. Figure 4 depicts the AUML sequence diagram of the interaction
we will describe. More details are reported in [24]. The Query Tool Agent is the
one that receives the query from a user. It starts a query management phase by
sending the query to a query agent.

In order to execute the query, a query agent must know which SINodes have
to be contacted. This information is asked the brokering agent (see Figure 2).
Given the query, a brokering agent is capable of decomposing it using its GVV
so as to produce queries that are executable by SINodes. In general, a query

128 S. Bergamaschi, P.R. Fillottrani, and J. Gelati

posed by a user maps into a set of queries to be sent to SINodes and thus a
brokering agent further computes the query required to fuse the partial results.

Decomposing the original query into executable ones according to the mapping
of the GVV must satisfy requirements related to the correctness and complete-
ness of the answer. In the context of the integrated schemas, correctness trans-
lates into assuring that the constraints enforced on the brokering agent GVV are
respected when decomposing the query, while completeness translates into assur-
ing that both the required join operations to fuse the final answer are performed
and the necessary filtering conditions are appropriately applied for each executed
query. A brokering agent performs thus two steps: (a) query expansion, which ex-
pands the query taking into consideration the integrity constraints of the global
schema and (b) query unfolding which decomposes a query into queries executable
by local sources so as they can be coherently fused to get the final answer.

As shown in Figure 2, the overall outcome is an expanded query and a set
of unfolded queries which comprise queries executable by SINodes and queries
to coherently fuse their results. The obtained set of queries identifies the set of
SINodes addressed by the original query. All these data are passed back to the
requesting query agent. At this stage, the query agent is responsible for supervi-
sioning the execution of the queries. It basically sends the executable part of the
unfolded queries to each SINode, collects the partial answers, applies the residual
filtering conditions and resolution functions and finally fuse the final answer solv-
ing the expanded query. The result is returned into the form of a view name which
can be queried by the query tool agent to visualize results to the requesting user.

4 Related Work

Several agent-based information retrieval systems are known. In order to com-
pare to similar systems, we now emphasize SEWASIE main characteristics:

– two-level data integration scheme: strongly tied local nodes are integrated
into SINodes; BAs provide globally integrated ontologies by means of weaker
mappings.

– query management: query building assisted by a query tool, query rewriting
in the two levels of data integration following local ontologies using sound
and complete algorithms.

– additional tools: negotiation and monitoring tools integrated in the same
agent architecture.

Altogether these points make the SEWASIE system unique among the agent-
based information retrieval systems.

Some systems are strong on data integration. CARROT II [25] is an agent-
based architecture for distributed information retrieval and document collec-
tion management. It consists of an arbitrary number of agents providing search
services over local document collections or information sources. They contain
metadata describing their local document store which are sent to other agents
that act as brokers. Like in SEWASIE, these metadata have an unstructured

The SEWASIE Multi-agent System 129

form, without a central control. But there are anyway several differences with
the SEWASIE architecture. First, data integration is done in only one level. In
this sense, CARROT II agents play the role of a brokering agent and an SIN-
ode at the same time. Second, there is no support for the user in creating the
query. Metadata information is not reflected in the process of query building.
Finally, the most important difference is that agents in this system only pro-
duce a routing of the query to relevant information sources, no query rewriting
is done in this step. In SEWASIE the query is reformulated following brokering
agent’s ontology before asking SINodes, which contain the information sources.
Several other information retrieval systems are known with routing agents, like
HARVEST [26], CORI [27] and InfoSleuth [28].

Other systems, like TSIMMIS [29], include some rewriting rules against pre-
defined query patterns. There are several steps of query processing also in the
MISSION project [30]. In these cases, data integration technology is not present,
or in TSIMMIS limited to automatic generation of wrappers [31] and mediators
[32] from web pages. In SEWASIE, the data integration techniques [4] adopted
by SINodes apply not only to unstructured, or semi-structured data sources, but
also to relational databases.

5 Conclusions and Future Work

In this paper, we have provided a general description of the SEWASIE multi-
agent architecture. We have shown the different types of agents and how they are
organized. While tackling architectural issues, we have made some observation
on the deployment architecture of the SEWASIE system. We have then described
how the system works for integrating and querying data. As future work we will
study how to extend the presented model to a setting where more brokering
agents are active. During the integration process, SINodes may then register
with multiple SINodes and SINodes may exchange information concerning their
mappings. As for solving query, query agents can contact more brokering agents
in order to obtain a decomposed query.

Acknowledgements

This work is supported in part by the 5th Framework IST programme of the Eu-
ropean Community through project SEWASIE within the Semantic Web Action
Line.

References

1. Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., rey, J., Jennifer,
U.: Integrating and accessing heterogeneous information sources in tsimmis (1995)

2. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J.D., Widom, J.: The TSIMMIS project: Integration of heterogeneous
information sources. In: 16th Meeting of the Information Processing Society of
Japan, Tokyo, Japan (1994) 7–18

130 S. Bergamaschi, P.R. Fillottrani, and J. Gelati

3. Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D.: The Information Manifold. In
Knoblock, C., Levy, A., eds.: Information Gathering from Heterogeneous, Distrib-
uted Environments, Stanford University, Stanford, California (1995)

4. Bergamaschi, S., Castano, S., Beneventano, D., Vincini, M.: Retrieving and inte-
grating data from multiple sources: the MOMIS approach. Data and Knowledge
Engineering 36 (2001) 215–249

5. Bergamaschi, S.: Global architecture of the SEWASIE system. SEWASIE Deliv-
erable D1.3a (2003)

6. Bergamaschi, S., Guerra, F., Vincini, M.: A peer-to-peer information system for
the semantic web. In: 2nd. International Workshop on Agents and Peer-to-Peer
Computing, held in AAMAS 2003 International Conference on Autonomous Agents
and MultiAgent Systems. (2003)

7. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Computer 25 (1992) 38–49

8. Schoop, M., Rehman, M.U., Jertila, A.: Specification of agent technology for ne-
gotiation support. SEWASIE Deliverable D5.4 (2004)

9. Tryllian: Agent Development Kit. www.tryllian.com/technology/product1.html
(1999)

10. Aisland: Aisland Project. aisland.jxta.org (2001)
11. Labs, F.: April Agent Platform. www.nar.fujitsulabs.com/aap (1997)
12. Comtec: Comtec Agent Platform. ias.comtec.co.jp/ap (2000)
13. FIPA-OS: FIPA-OS. fipa-os.sourceforge.net (1997)
14. Grasshopper: Grasshopper. www.grasshopper.de (1999)
15. Software, A.: JACK intelligent agents. www.agent-software.com (1998)
16. (TILab), T.I.L.: JADE. jade.cselt.it (2000)
17. Agent, J.: JAS API. www.java-agent.org (2000)
18. Microsystem, S.: http://java.sun.com/ (2003)
19. Microsystem, S.: http://java.sun.com/j2se/1.4.2/docs/guide/rmi/ (2003)
20. Microsystem, S.: http://java.sun.com/products/jaas/ (2003)
21. Modeling, F.T.: Fipa modeling: Interaction diagrams (2003)
22. Fergnani, A.: Ontology dynamics for semantic web: the momis approach (2002)
23. Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: Synthesizing an inte-

grated ontology. IEEE Internet Computing Magazine 7 (2003) 42–51
24. Beneventano, D., Lenzerini, M., Majkić, Z., Mandreoli, F.: Techniques for query

reformulation, query merging, and information reconciliation - part a. SEWASIE
Deliverable D3.2a (2003)

25. Klusch, M., Ossowski, S., Shehory, O., eds.: Integrating Distributed Information
Sources with CARROT II. In Klusch, M., Ossowski, S., Shehory, O., eds.: Coopera-
tive Information Agents VI, 6th International Workshop, CIA 2002, Madrid, Spain,
September 18-20, 2002, Proceedings. Volume 2446 of Lecture Notes in Computer
Science., Springer (2002)

26. Bowman, C.M., Danzig, P., Hardy, D.R., Manber, U., Schwartz, M.F.: The Harvest
information discovery and access system. Computer Networks and ISDN Systems
28 (1995) 119–125

27. Callan, J.P., Lu, Z., Croft, W.B.: Searching distributed collections with inference
networks. In Fox, E.A., Ingwersen, P., Fidel, R., eds.: SIGIR’95, Proceedings of the
18th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. Seattle, Washington, USA, July 9-13, 1995 (Special Issue
of the SIGIR Forum), ACM Press (1995) 21–28

28. Woelk, D., Tomlinson, C.: Infosleuth: Networked exploitation of information using
semantic agents. In: COMPCON Conference. (1995)

The SEWASIE Multi-agent System 131

29. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y.,
Ullman, J.D., Vassalos, V., Widom, J.: The TSIMMIS approach to mediation:
Data models and languages. Journal of Intelligent Information Systems 8 (1997)
117–132

30. McClean, S.I., Karali, I., Scotney, B.W., Greer, K., Kapos, G.D., Hong, J., Bell,
D.A., Hatzopoulos, M.: Agents for querying distributed statistical databases over
the internet. International Journal on Artificial Intelligence Tools 11 (2002) 63–94

31. Hammer, J., McHugh, J., Garcia-Molina, H.: Semistructured data: The tsimmis
experience. In: Proceedings of the First East-European Symposium on Advances in
Databases and Information Systems (ADBIS’97), St.-Petersburg, September 2-5,
1997. Volume 1: Regular Papers, Nevsky Dialect (1997) 1–8

32. Papakonstantinou, Y., Garcia-Molina, H., Widom, J.: Object exchange across
heterogeneous information sources. In Yu, P.S., Chen, A.L.P., eds.: Proceedings
of the Eleventh International Conference on Data Engineering, March 6-10, 1995,
Taipei, Taiwan, IEEE Computer Society (1995) 251–260

Service Discovery on Dynamic Peer-to-Peer
Networks Using Mobile Agents

Evan A. Sultanik and William C. Regli

Department of Computer Science, College of Engineering,
Drexel University, Philadelphia, PA 19104-2875

{eas28, regli}@drexel.edu

Abstract. Service discovery and location introduces numerous chal-
lenges for multi-agent planning in dynamic, real-world domains. Specif-
ically, on non-fault tolerant, peer-to-peer and ad hoc wireless networks,
services and agents may become unavailable due to network partition-
ing, traffic congestion, or attack. Such disruptions might prohibit the
ability of agents to find the services needed to execute a plan, possibly
threatening the survivability and stability of the overall agent system.
This research introduces a method for service discovery and availability
prediction based on random walks and demonstrates its applicability in
the setting of peer-to-peer, wireless networks.

1 Introduction

Dynamic multi-agent planning has many shortcomings in real-world domains.
Specifically, it is not clear how services can be discovered and located in dy-
namic non-fault-tolerant networks. Examples of such include multi-hop ad hoc
wireless and dynamic peer-to-peer networks. The synthetic aircraft domain [1]
affirms the problem of service discovery for multi-agent planning systems. A
group of agent-driven helicopters are deployed on a battlefield; one helicopter
“disappears.” In this case “disappearance” might mean “over a ridge,” “out
of communication range,” or “destroyed.” How do the remaining agents decide
if a node, or service on that node, has become unavailable and re-planning is
required? Existing work assumes that such information is instantaneously an-
nounced to all nodes and agents, a process which fails to take into account the
realities of information propagation on peer-to-peer and wireless networks. In
the synthetic aircraft example, knowledge and intervention of a human agent is
required to alert the agent system that the helicopter has disappeared. Further-
more, recent research has shown that no fixed memory deterministic algorithm
can locate a service in a network in a fixed amount of time [2].

Our work addresses the problem of how agents can achieve global state aware-
ness in peer-to-peer networks, with a specific focus on multi-hop, ad hoc wireless
networks. In this context, “global state awareness” includes (but is not limited
to) information about the location and capabilities of services on the dynamic
network (i.e. mobile agents and web services). We propose a fixed-memory ran-
domized method for approximating the location of a service in a dynamic network

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 132–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Service Discovery on Dynamic P2P Networks Using Mobile Agents 133

with a probabilistic certainty in a fixed amount of time. We present a mathemat-
ical formulation of agent movement in the network and an algorithmic technique
for approximating the parameters of the formulation.

2 Background

The nature of ad hoc and peer-to-peer networks inherently imposes the re-
striction of communication to one’s “neighbors.” Therefore, communication over
multiple hops in the network is difficult without facilities such as ad hoc rout-
ing [3,4,5,6]. Recent research has focused on using mobile agents for routing in ad
hoc networks [7,8,9] and the need for further investigation in this area has been
established [10]. Most methods rely on using the frequency of agents walking the
network visiting each host to predict the topology. However, far less work exists
on discovering the current distribution of services throughout the network.

Mainly due to the proliferation of peer-to-peer file sharing technology, sig-
nificant research has been made in the area of dynamic networks. Service dis-
covery architectures exist for such networks [11,12], some specifically designed
for mobile ad hoc networks [13], however these often require services to regis-
ter themselves when available. Search techniques have also been applied to the
problem of localization, such as Content-Addressable Networks (CANs) [14,15].
However, search-based approaches often assume that agents can arbitrarily mi-
grate from any host in the network to another [16]. Agent-based methods for
service discovery have also been proposed [17,18]. Furthermore, CANs and Dis-
tributed Hash Tables assume that the index and data elements are fixed; none
of these approaches directly address the problem of locating mobile services.

In some domains mobile agents can be service providers. For example, a
certificate authority might be required for secure communication between heli-
copters in the synthetic aircraft domain. This server could be encapsulated by
a mobile agent capable of reasoning about the network [19]. The agent might
then continuously migrate to portions of the network with low volatility. For
instance, the agent might migrate to helicopters less likely to be removed from
the network. To improve performance and minimize latency, heuristics for such
migration might include proximity to the geographic center of the group or as-
sociation with the centroid of the network topology graph. Therefore, a method
for pro-actively tracking the location of services in dynamic networks is required.

3 Theoretical Approach

Deploying a set of service monitoring agents, A, to randomly walk a set of hosts,
H, of a peer-to-peer network can provide an accurate on-line means of service
discovery. The agents act like bees, working to “pollinate” the network with
their knowledge of services’ locations. As seen in Figure 1, each agent’s walk is
dictated by the underlying network topology. Furthermore, there is no guarantee
that all agents visiting a host have encountered a service thus far on their walks.

134 E. Sultanik and W.C. Regli

Network Layer

Agent Layer

Fig. 1. An agent randomly walking a peer-to-peer network.

This approach has three important advantages over alternatives, such as
näıve message passing and broadcast:

1. minimal network bandwidth is used, and bandwidth usage scales linearly;
this is an important issue for resource-constrained mobile devices and large-
scale peer-to-peer networks;

2. mobile code provides for synergy between networks of non-homogeneous ser-
vice discovery architectures;

3. services need not register themselves; and
4. properties of random walks are relatively easy to mathematically model and

likewise make inferences upon.

The remainder of this paper defines a mathematical model for the behavior
of these agents, allowing for time-critical reasoning and probabilistic inferences
to be made upon the system. We use properties of Markov chains to model the
probability that an agent will visit a specific host, a binomial distribution to
model the probability that an agent has seen a service, and another binomial
distribution to develop an expected value for the number of agents that will visit
a specific host in some amount of time.

3.1 Random Walking Mobile Agents

The agents’ task environment, a dynamic peer-to-peer network, is stochastic,
dynamic, and continuous; there exists a delay between actual topology changes
and the propagation of knowledge of these changes throughout the network. The
agents do not have a goal, per se; their sole purpose is to randomly walk the
network gathering information. Agents’ percepts are comprised solely of the set
of services available at the current host, Sh, and the set of hosts neighboring
the current host, {x ∈ H|Eh,x > 0} (where E ⊆ H × H is the set of edges in
the topology and the notation Ex,y denotes the weight of the edge from node
x to node y). Edge weights represent transition probabilities between hosts in
the network. For most networks these will be uniform. However, ad hoc wireless
networks might correlate edge weights to link quality between hosts to avoid
agent migration over unreliable links.

Service Discovery on Dynamic P2P Networks Using Mobile Agents 135

Agents’ actions are comprised solely of hopping to a neighbor host from their
current host. At each host agents query for services, storing these data in memory
(along with a timestamp). The agents’ itineraries are dictated by the network;
successor hosts for migration are selected randomly from the set of available
neighbor hosts in the network.

3.2 Predicting Agent Arrival at a Host

The frequency of agent visits can be predicted by developing a function, F (N),
for the probability that an agent a ∈ A with knowledge of a service s ∈ S will
visit a specific host h ∈ H in a time interval t. N is a local state description
represented by a tuple containing the following elements:

t - length of the time interval;
ν - probability an agent will be at host h;
η - number of instances of the service s;

|H| - cardinality of the set of hosts;
|A| - cardinality of the set of agents;

	 - average time needed for an agent to hop between neighbors; and
τ - maximum desired amount of time since an agent last saw the service.

We define F (N) as a mapping from N to a real number probability:

F : (t, ν, η, |H|, |A|, 	, τ) �→ [0, 1] . (1)

F (N) is therefore a probability distribution over the space N . We decompose
F (N) into three component distributions:

πh - probability that an agent will visit host h at any given time;
ν̂ - an approximation of ν; and

P (n ≥ 1) - probability that an agent will see at least 1 instance of the service s
in time τ .

These distributions need not be calculated a priori. A method for approxi-
mating πh is given in §3.3 which is then used to develop ν̂ in §3.4. P (n ≥ 1)
is then defined in §3.5. Finally, the approximation of F (N) is constructed from
these component distributions in §3.6.

Intuitively, the larger |A| and the smaller |H| & 	 the more often agents
will visit hosts. τ is simply meant to be a measure of the “age” of each agent’s
knowledge of the services. Since global time synchronization is a difficult problem
in some domains, τ can also be replaced by a heuristic that approximates the
age of the agent’s data. For example, the number of hosts the agent has visited
since it last saw an instance of the service could be used.

3.3 Mathematics of Random Walks

Random walks along graphs are essentially finite Markov chains, and both share
many of the same properties. Gkantsidis, et al., experimentally showed that,

136 E. Sultanik and W.C. Regli

when searching for items occurring frequently in a network, random walks per-
form better than flooding (for the same number of network messages) in certain
cases [20]. In order to predict the frequency of randomly-walking agents visiting
a specific host, though, we must first develop a probability that an agent will be
on a specific host at any time.

The PageRank algorithm [21] determines the probability that a random web
surfer will be on a given web page at any time. PageRank employs Markov chains
to model random walks along the graph of the Internet. One can therefore use
PageRank to determine the probability that an agent randomly walking a net-
work will be visiting a specific host at any given time. The first eigenvector,
π, of a graph’s adjacency matrix, J , is fundamentally intertwined with the sta-
tionarity of the graph. The eigenvector π corresponds to the eigenvalue λ1 such
that πJ = λ1π. PageRank exploits this fact and provides a means for approxi-
mating the primary right eigenvector of an adjacency matrix. Algorithm 1 is an
adaptation of this algorithm for our domain.

Algorithm 1. Agent-Visitation-Probabilities(J, d, iterations)
Require: J is the adjacency matrix representation of the network, d is a real number

damping factor in the range [0, 1] (usually set to 0.85), iterations is the number of
iterations to run, and all elements of π are initialized to 1

|H| .
Ensure: π, the primary right eigenvector of J , contains the probabilities that a ran-

dom agent will be on any node
for i = 1 to iterations do

for j = 1 to |H| do
sum ← 0
for k = 1 to |H| do

if Jk,j > 0 then
links ← |{x | (1 ≤ x ≤ |H|) ∧ (Jk,x > 0)}|
if links > 0 then

sum ← sum + πk ÷ links
πj ← (1 − d) + d· sum

πh is then the probability that an agent a ∈ A is on a specific host h ∈ H at
any given time. Mathematically, π can also be represented as follows:

π = Eigenvector1(dJT) . (2)

3.4 Approximating ν

An element of the state description N , ν is defined as the probability that an
agent will visit the host in time t. Therefore, by definition, one can use π to
develop an estimator of ν:

ν̂ = πh, |A| = 1 . (3)

Service Discovery on Dynamic P2P Networks Using Mobile Agents 137

However, a binomial distribution must be used to define ν̂ if |A| > 1:

ν̂ = 1 −
(
1 −

(
1 − (1 − πh)|A|

))t

= 1 − (1 − πh)t |A| . (4)

In other words, ν̂ is 1.0 minus the probability that none of the |A| agents will
visit in time t.

However, it is not sufficient to define the mapping of F (N) solely based upon
ν̂ because not all agents that visit a host have recent enough data about the
service being located. Therefore, a function defining the probability that the
random agent visiting host h will have a recent-enough1 memory of service s is
needed.

3.5 Accounting for τ

ν provides a prediction mechanism for the number of random-walking agents
that will visit a host. However, ν does not take into account the fact that these
agents may not have recently seen an instance of the service s. τ is an element of
the state description that dictates the maximum amount of time since a service
discovery agent has seen the service. Therefore, τ must be incorporated into the
probability.

Let H ⊆ H be the set of hosts that an agent visits in time τ and S ⊆ S be
the set of services an agent sees in time τ . The expected value for the number
of hosts the agent will visit is given by:

〈|H |〉 =
⌊τ

	

⌋
. (5)

It is assumed that, due to the mobility of the network and its associated random
topology, the probability of a randomly-walking agent visiting a host with a
service is normally distributed. This claim is empirically validated in §4.2. We
can then say η

|H| is the probability that an instance of the service exists at
a randomly-selected host. The probability that an agent walking the network
will encounter an instance of s in time τ can then be modeled as a binomial
distribution of |H | trials:

P
(
n

∣∣|H |
)

=
(

|H |
n

) (
η

|H|

)n (
1 − η

|H|

)|H|−n

, (6)

where n is the number of instances of s discovered:

n = |{x|x ∈ S ∧ x = s}| . (7)

1 By “recent-enough” we mean “of age less than or equal to τ .”

138 E. Sultanik and W.C. Regli

Summing (6) over all n where n ≥ 1:

P (n ≥ 1) =
|H|∑
i=1

((
|H |
i

) (
η

|H|

)i (
1 − η

|H|

)|H|−i
)

= 1 −
(

1 − η

|H|

)� τ
� �

. (8)

P (n ≥ 1) = P (∃x, x ∈ S ∧ x = s) is the probability that an agent has seen at
least one instance of the service s while walking the network in time τ .

3.6 Constructing F (N)

Given the probability that an agent will visit a host, ν, and the probability that
a randomly walking agent will have seen an instance of the service, P (n ≥ 1),
we can define the mapping of F (N).

We assume the event that an agent has seen an instance of service s is inde-
pendent of the agent visiting host h. Let A be the set of agents that visit h in
time t. Using A, we can combine equations (4) & (8) and say,

F (N) =
{

1.0, A �= ∅
0, A = ∅

= P (n ≥ 1) ν, t = 1 . (9)

Then, using another binomial distribution, we can define the mapping of F (N)
for all values of t:

F (N) = P (A �= ∅)

=
t∑

i=1

((
t

i

)
(P (n ≥ 1) ν)i (1 − P (n ≥ 1) ν)t−i

)

= 1 −
(

1 − ν + ν

(
1 − η

|H|

)� τ
� �)t

. (10)

The function F (N) is useful for predicting the number of randomly walking
agents that have seen service s in time τ and will also visit host h in time t.
Take the synthetic aircraft domain as an example; suppose an agent needs to
locate a service in a fixed amount of time. If s does not exist, the agent will
need to re-plan. If the service is only available from the helicopter that has
disappeared, the agent will waste its time trying to look for the service. Using
F (N), the agent can predict if it will hear from any of the service discovery
agents in time t. If F (N) returns a low probability, the agent will know to
immediately re-plan without waiting for any of the service-discovery agents to
arrive.

Service Discovery on Dynamic P2P Networks Using Mobile Agents 139

4 Empirical Validation

4.1 Methodology

Network simulation is accomplished using the Macro Agent Transport Event-
based Simulator (MATES) [22]. We model the network using the exact connec-
tivity method for mobile ad hoc network graph generation [23]; connections are
determined by the Euclidean distance between hosts. The hosts’ movements are
bounded by a 1200x1200 meter box, and each host has a radio range of 300
meters. At the beginning of each experiment, hosts are placed randomly in the
box and given a random direction. Both agents and instances of the service s
are randomly distributed among the hosts. Every iteration of the simulation:

1. Each host’s direction is randomly chosen by either maintaining in its current
heading (with probability 0.6), rotating 45◦ clockwise (with probability 0.2),
or rotating 45◦ counter-clockwise (with probability 0.2);

2. hosts move forward one meter in their respective directions;
3. agents not currently in transit migrate from their current host to a randomly-

selected neighbor host (as described in §3.1). Agent transit times are cal-
culated with an inverse exponential relationship to the Euclidean distance
between hosts. The average transit time for agents, 	, is 1 iteration;

4. every instance of s is treated as a mobile agent; each service migrates to a
random neighbor host as described above; and

5. every t iterations, each host uses F (N) to develop a probability of a knowl-
edgeable agent visiting it in the subsequent t iterations. The actual frequency
of knowledgeable agent visits, |A|

t , is also recorded.

4.2 Experimental Results

The results we present are from 30 runs of the simulation, 300000 iterations each,
with 30 hosts, 15 agents, and 3 instances of the service s.

Accuracy of PageRank. Figure 2 illustrates equation (4)’s accuracy in pre-
dicting the frequency of agent visits. One can see that the prediction approxi-
mates the actual value very closely and is also strongly correlated. The average
coefficient of correlation between these variables over the set of 30 runs is 0.68.
The average bias for the predicted probability is 0.01.

Verification of Services’ Distribution. The frequency distribution for the
number of instances of service s agents saw was recorded. The Shapiro-Wilk
normality test returns a value of 0.5532 for the experimental distribution (with
an infinitesimally small P-value), meaning the experimental distribution does
partially deviate from normality. Nonetheless, this result implies that one cannot
say that the data are not normally distributed. The deviation from normality can
be explained by the low probability of an agent seeing an instance of the service;
the data are skewed more toward an F-distribution. However, as demonstrated
by the accuracy of F (N) in Figure 3, it is reasonable to assume this distribution
is normal.

140 E. Sultanik and W.C. Regli

Accuracy of F (N). Figure 3 illustrates equation (10)’s accuracy in predicting
the frequency of knowledgeable agent visits. One can see that the prediction
approximates the actual value very closely and is also correlated. The average
coefficient of correlation between these variables over the set of 30 runs is 0.60.
The average bias for the predicted probability is -0.03.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20000 40000 60000 80000 100000

P
ro

ba
bi

lit
y

Iteration

Predicted
Actual

Fig. 2. Correlation between the predicted
ν and actual agent frequency for the first
100000 iterations of simulation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50000 100000 150000 200000 250000 300000

P
ro

ba
bi

lit
y

Iteration

Predicted
Actual

Fig. 3. Prediction, F (N), and actual
agent visitation probabilities for a 300000
iteration simulation

5 Discussion

Examples of Applying the Technique. The information updates provided by the
service discovery agents can be used to create new capabilities for multi-agent
systems operating on peer-to-peer networks. Examples include:

– Learning availability thresholds, where if a service or host has not been
“seen” by a discovery agent the remaining hosts and agents can (with high
probability) assume that it has become unavailable and re-plan accordingly.

– Network triage, where the disappearance of discovery agents or their lack of
contact with vital network nodes can be used to infer that the network has
been damaged, compromised or segmented.

– Time-critical reasoning, where hosts use information provided by discovery
agents to inform time-critical functions about how long they might reason-
ably expect to take to execute if they depend on remote services.

– Optimizing the number of agents, where, given an expected value for ν
(which can be calculated using an expected network topology), one can use
equation (10) to compute the optimal number of agents needed to achieve a
required frequency of service discovery agent updates.

Limitations. Elements of the state description, N , can be both variable and
unknown in some domains. Therefore agents might develop beliefs about the
values of these parameters, such as 	 and η. Furthermore, there are more efficient
ways for the agents to traverse the network (i.e. self-avoiding walks). Research

Service Discovery on Dynamic P2P Networks Using Mobile Agents 141

into these alternate techniques is required, however mathematically modeling
them is more complex than with random walks.

Although ν can be defined from πh, developing a belief of the global network
topology, J , is a difficult problem on dynamic peer-to-peer networks. Pro-active
routing algorithms for ad hoc networks often define a protocol to propagate this
information, but this is expensive. The amount of memory/bandwidth required
for each network message can in the worst case be O(n2) (to transmit the entire
adjacency matrix). Since computation of F (N) really only requires πh (not the
entire adjacency matrix J), πh could be inferred by the observed frequency of
agent visits at host h over a period of time. Research is required to evaluate this.

Future Work. We are currently implementing our approach for integration and
testing in the Secure Wireless Agent Testbed (SWAT) [24]. This will include
further empirical validation of the methods presented in this paper in a live
testbed of at least a dozen mobile computing devices on an ad hoc wireless
network.

Our proposed method for propagating service location information through-
out the network can be used as a heuristic for mobile agent-based search. For
example, hosts could cache data brought to them by the random walking service
discovery agents. In doing so, each host would develop an index (or “belief”) of
the locations of services. These beliefs will become more accurate in conjunction
with a host’s proximity to the service. Therefore these beliefs, along with the
timestamp of when the agent last saw the service, could be used as an A* search
heuristic when locating the service. Work is needed to prove the feasibility, ad-
missibility, and accuracy of this heuristic; we are in the process of using the
SWAT to do so.

Further experimentation is required to ascertain the effect of varying parame-
ters, such as 	. In addition, the effect of CPU and network bandwidth limitations
is not clear. Finally, the accuracy of our approach on networks of heterogeneous
hosts is unknown.

6 Conclusions

This paper addresses the critical problem of service discovery and location for
multi-agent computing in dynamic, peer-to-peer networks. In this context, the
location and capabilities of services, agents, and hosts are all part of a global
state which can only be partially observed by each agent in the network. Our
technical approach uses mobile agents and exploits the combinatorial properties
of random walks to create a set of service discovery agents that maintain overall
state for all nodes on the network. The principle contributions of this work
include the development of a mathematical formulation of this problem of service
discovery by mobile agents in a dynamic network and a set of empirical studies
that validate the formulation.

Our results show that this pro-active approach can be used to maintain accu-
rate state information across a dynamic network while having a limited effect on

142 E. Sultanik and W.C. Regli

network messaging. We believe that this work represents an important example
of how mobile agents can be practically adapted to the constraints posed by real
network environments. In addition, this work can provide a basis for enabling
multi-agent planning to sense and react to vital network-level events in order to
improve plan execution and survivability.

References

1. Tambe, M.: Implementing agent teams in dynamic multi-agent environments. Ap-
plied Artificial Intelligence 12 (1998) 189–210

2. Kirousis, L.M., Kranakis, E., Krizanc, D., Stamatiou, Y.C.: Locating information
with uncertainty in fully interconnected networks. In: International Symposium on
Distributed Computing. (2000) 283–296

3. Perkins, C., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: IEEE
Workshop on Mobile Computer Systems and Applications. (1999) 90–100

4. Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., Viennot, L.:
Optimized link state routing protocol for ad hoc networks. In: IEEE INMIC 01.
Technology for the 21st Century. (2001) 62–68

5. Perkins, C., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers. In: ACM SIGCOMM’94 Conference on
Communications Architectures, Protocols and Applications. (1994) 234–244

6. Johnson, D.B., Maltz, D.A., Broch, J.: DSR: The dynamic source routing protocol
for multihop wireless ad hoc networks. Ad Hoc Networking (2001) 139–172

7. Marwaha, S., Khong Tham, C., Srinivasan, D.: Mobile agents based routing proto-
col for mobile ad hoc networks. In: Proceedings of IEEE International Conference
on Networks (ICON). (2002) 27–30

8. Minar, N., Kramer, K.H., Maes, P.: 12. In: Cooperating Mobile Agents for Dynamic
Network Routing. Springer-Verlag (1999) ISBN: 3-540-65578-6.

9. Roy Choudhury, R., Bandyopadhyay, S., Paul, K.: A distributed mechanism for
topology discovery in ad hoc wireless networks using mobile agents. In: Proceed-
ings of the 1st ACM international symposium on Mobile ad hoc networking &
computing, IEEE Press (2000) 145–146

10. Migas, N., Buchanan, W.J., McArtney, K.A.: Mobile agents for routing, topol-
ogy discovery, and automatic network reconfiguration in ad-hoc networks. In:
Proceedings of the 10th IEEE Conference and Workshop on the Engineering of
Computer-Based Systems. (2003) 200–206

11. Langley, B., Paolucci, M., Sycara, K.: Discovery of infrastructure in multi-agent
systems. In: Agents 2001 Workshop on Infrastructure for Agents, MAS, and Scal-
able MAS. (2001)

12. Kahn, M.L., Cicalese, C.D.T.: The CoABS grid. In: Innovative Concepts of Agent-
Based Systems: 1st International Workshop on Radical Agent Concepts (WRAC).
(2002)

13. Kozat, U.C., Tassiulas, L.: Service discovery in mobile ad hoc networks: An overall
perspective on architectural choices and network layer support issues. Ad Hoc
Networks 2 (2004) 23–44

14. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: Proceedings of ACM SIGCOMM 2001. (2001)

Service Discovery on Dynamic P2P Networks Using Mobile Agents 143

15. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications, ACM Press (2001) 149–160

16. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder
by mobile agents. In: Proceedings of the fourteenth annual ACM symposium on
Parallel algorithms and architectures, ACM Press (2002) 200–209

17. Dasgupta, P.: Improving peer-to-peer resource discovery using mobile agent based
referrals. In: Proceedings of the 2nd International Autonomous Agents and Multi-
agent Systems Conference (AAMAS), Proceedings of the 2nd Workshop on Agent
Enabled P2P Computing. (2003) 41–54

18. Nagi, K., Elghandour, I., König-Ries, B.: Mobile agents for locating documents
in ad-hoc networks. In Gianluca Moro, C.S., Singh, M.P., eds.: Agents and Peer-
to-Peer Computing (AP2PC 2003), Second International Workshop, Melbourne,
Australia, July, 2003, Revised and Invited Papers. Volume 2872 of Lecture Notes
in Computer Science., Springer (2004) 199–205

19. Peysakhov, M., Artz, D., Regli, W., Sultanik, E.: Network awareness for agent
security in mobile ad-hoc networks. In: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multi Agent Systems, Association
for Computing Machinery (2004) 368–375

20. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks.
In: Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies INFOCOM ’04 (to appear), IEEE (2004)

21. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30 (1998) 107–117

22. Sultanik, E.A., Peysakhov, M.D., Regli, W.C.: Agent transport simulation for
dynamic peer-to-peer networks. Technical Report DU-CS-04-02, Drexel University
(2004)

23. Barrett, C.L., Marathe, M.V., Engelhart, D.C., Sivasubramaniam, A.: Approxi-
mate connectivity graph generation in mobile ad hoc radio networks. In: Proceed-
ings of the 36th Annual Simulation Symposium, IEEE Computer Society (2003)
81

24. Sultanik, E., Artz, D., Anderson, G., Kam, M., Regli, W., Peysakhov, M., Sevy,
J., Belov, N., Morizio, N., Mroczkowski, A.: Secure mobile agents on ad hoc wire-
less networks. In: The Fifteenth Innovative Applications of Artificial Intelligence
Conference, American Association for Artificial Intelligence (2003)

An Agent Module for a System on Mobile
Devices

Praveen Madiraju, Sushil K. Prasad,
Rajshekhar Sunderraman, and Erdogan Dogdu

Department of Computer Science,
Georgia State University,

Atlanta, GA 30302
{cscpnmx, sprasad, raj, edogdu}@cs.gsu.edu

Abstract. A Middleware is the software that assists an application to
interact or communicate with other applications, networks, hardware,
and/or operating systems. We have earlier proposed an RMI-based mid-
dleware for mobile devices called System on Mobile Devices (SyD). A
middleware on mobile devices is a challenging issue, as it has to deal with
problems such as limited memory, frequent disconnections, low band-
width connection, and limited battery life. The mobile agent module fits
in the context of the middleware for mobile devices as it quite natu-
rally alleviates the above mentioned problems. Communication between
devices and method invocation capabilities, among other things are car-
ried out by employing agents. In this paper, we provide the design and
implementation of an agent module for SyD. We also present practical
experiences gathered from carrying out experiments on the agent module.

Keywords: Agent Middleware for Mobile Devices, Agent Based Execu-
tion Engine, Mobile Agents, System on Mobile Devices Middleware.

1 Introduction

It has been widely acknowledged that a middleware is essential for application
development on mobile devices. However, application on mobile devices intro-
duces multiple challenges in a mobile setting. Mobile devices suffer from: frequent
disconnection, low bandwidth connection, limited battery life, and limited mem-
ory. A middleware for mobile devices is a software that assists an application
to interact or communicate with other applications on other mobile devices. A
middleware should support the following basic set of services:

– Communication Services: enables communication between different mobile
devices.

– Execution and Listening Services: provides capability to execute method
calls on remote devices and also be able to listen to incoming method calls.

– Data Access and Connectivity Services: makes data on one mobile device be
accessible to authorized groups of devices and also provide ability for mobile
devices to connect to other devices.

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 144–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Agent Module for a System on Mobile Devices 145

We have earlier proposed the System on Mobile Devices middleware (SyD) [11],
[12], [13], [14]. SyD provides all the above mentioned services based on Remote
Method Invocation (RMI). An emerging middleware approach is the agent ori-
ented middleware approach. The services that a middleware provides, can be
realized by employing mobile agents. Mobile agent approach inherently has ad-
vantages when compared to RMI. Once the agent is transported to a destination
host, the agent can go ahead and execute even in case of a disconnection and
when the connection is alive, the agent returns the result to the source host.
This is the basic motivation for implementing an agent module for SyD.

In this paper we show the design and implementation of an agent module for
SyD. One of the challenges of designing the agent module for mobile devices is
the memory size overhead of the mobile agent framework. We have used μCode
agent framework [10], as it is lightweight and also provides the basic required
services of an agent framework. We also describe the experiments conducted on
the agent module for SyD.

The rest of the paper is organized as follows: In Section 2, we give a brief
overview of SyD middleware. We present background on agents and design of
the mobile agent module for SyD in Section 3. The details of the experiments
conducted on the agent module are described in Section 4. In Section 5, we
compare our work with other peer’s work and finally we offer our conclusions in
Section 6.

2 SyD Middleware

We give a very brief overview of System on Mobile Devices (SyD) middleware
[11], [12], [13], [14]. SyD is a new middleware technology that addresses the
key problems of heterogeneity of device, data format and network, and that of
mobility. SyD allows rapid development of a range of portable and reliable appli-
cations. SyD combines ease of application development, mobility of code, appli-
cation, data and users, independence from network and geographical location,
and the scalability required of large enterprise applications concurrently with
the small footprint required by handheld devices. Each device is managed by a
SyD deviceware that encapsulates it to present a uniform and persistent object
view of the device data and methods. Groups of SyD devices are managed by the
SyD groupware that brokers all inter device activities, and presents a uniform
world view of the SyD application to be developed and executed on. All objects
hosted by each device are published with the SyD groupware directory service
that enables SyD applications to dynamically form groups of objects hosted by
devices, and operate on them in a manner independent of devices, data, and
underlying networks. The SyD groupware hosts the application and other mid-
dleware objects, and provides a powerful set of services for directory and group
management, and for performing group communication and other functionalities
across multiple devices. SyD middleware can function with or without a back-
bone network infrastructure on weakly connected networks as well as on ad-hoc
networks providing varying levels of QoS guarantees.

146 P. Madiraju et al.

SyDDirectory

SyDListener

SyDEventHandler

SyDEngine

SyDBond

2. Register
 globally

2. Lookup

SyD
Application

Object
Server

Client UI

SyDKernel

1. Execute

TC
P/

I P

1. Invoke

SyDAppO

SyDAppO

SyDAppO

SyDAppO

SyDAppO

3. Remote
Invoke

2. Invoke

1. Publish

Legend

Server
registration

Remote
invocation (client)

Server
method
invocation

Fig. 1. SyD kernel architecture

We have earlier designed and implemented a modular SyD Kernel utility in
Java. Fig. 1 describes SyD Kernel with the following five modules :

– SyDDirectory: Provides user/group/service publishing, management, and
lookup services to SyD users and device objects and also supports intelligent
proxy maintenance for users/devices.

– SyDEngine: Allows users to execute single or group services remotely and
aggregate results.

– SyDListener: Enables SyD device objects to publish their services (server
functionalities) as “listeners” locally on the device and globally via the direc-
tory services. It then allows users on SyD network to invoke single or group
services via remote invocations seamlessly (location transparency).

– SyDEventHandler: Handles local and global event registration, monitor-
ing, and triggering.

– SyDBond: Enables an application to create and enforce interdependencies,
constraints and automatic updates among groups of SyD entities.

3 Agent Module for SyD

Here, we first give intoduction to mobile agents and then present the design of
agent module in the context of SyD.

3.1 Mobile Agents

Mobile agents can be considered as an incremental evolution of the earlier idea
of process migration. A mobile agent is an autonomous, active program that can
move both data and functionality (code) to multiple places within a distributed
system. The state of the running program is saved and transported to the new

An Agent Module for a System on Mobile Devices 147

host, allowing the program to continue execution from where it left off before
migration [5],[8].

Mobile agents require two components for their successful execution. The first
component is the agent itself. The second component being the place where in
an agent can execute. This is often referred to as the software agent framework.
It provides services and primitives that help in the use, implementation and
execution of systems deploying mobile agents. This generic framework allows the
developers to focus on the logic of the application being implemented, instead of
focusing on the implementation details of the mobile agent system. Specifically, It
should support the creation, activation, deactivation and management of agents,
which include mechanisms to help in the migration, communication, persistence,
failure recovery, management, creation and finalization of agents. Additional
services as naming and object persistence can also be provided. This environment
must also be safe, in order to protect the resources of the machine from malicious
attacks and possible bugs in the implementation of the agent code. Some of the
popular examples are: IBMs Aglets[6], Mitsubishi Electric ITAs Concordia [7]
and Object Spaces Voyager [4].

3.2 Design of Agent Module

In Fig. 2, we describe the agent module in the context of SyD. A mobile device
serving as a server (SyD Application Object Server in Fig. 2), registers it’s ser-
vices and then provides services to clients. We illustrate this using the following
steps (arrow labels with legend “Server registration”):

1. In the event of a new publish, the SyD Application Object Server sends a
publish request to the Agent Module.

2. The Agent Module publishes and registers the services offered by the SyD
Application Object Server to the SyDDirectory.

A mobile device serving as a client (Client UI in Fig. 2) can execute object
services located on remote devices using the Agent Module. We illustrate the
Client UI process in the following three steps (arrow labels with legend “Remote
invocation(client)”):

1. The Client sends an execute of a remote service as a local call to the Agent
Module.

2. The Agent Module dispatches an agent on to the SyDDirectory to get the
remote user/service information of the remote server

3. With the user/service information (typically the URL of the remote server),
the agent module dispatches another agent to complete the remote invoca-
tion.

We have used μCode[10] as our agent framework for mobile devices. Fig. 3
gives the internal details of the Agent Module. μCodeServer is running on each
device listening for incoming mobile agents and is also capable of executing
mobile agents on remote devices. Fig. 3 shows a sample method being executed
by mobile device 1 on device n.

148 P. Madiraju et al.

SyDDirectory

SyDEventHandler

SyDBond

2. Register
 globally

2. Lookup

SyD
Application

Object
Server

Client UI

SyDKernel

1. Execute

T
C

P/
I P

1. Invoke

SyDAppO

SyDAppO

SyDAppO

SyDAppO

SyDAppO

3. Remote
Invoke

2. Invoke

1. Publish

Legend

Server
registration

Remote
invocation (client)

Server
method
invocation

Agent
Module

Fig. 2. Design of agent module for SyD

1. Mobile Device 1 sends an agent to the directory service to get the physical
location information(URL) of device n.

2. The μCode agent framework has a listener, which listens for incoming mobile
agents. Mobile Device 1 now has the physical location(URL) of the Mobile
Device n.

3. Mobile Device 1 dispatches mobile agent to Mobile Device n to execute a
method call.

4. Mobile Device n returns the result of executing the method call through an
agent on to mobile device 1.

However, it should be noted that, steps 1 and 2 from above could also be real-
ized by simply exchanging messages between the agents rather than sending the
agent by itself.

μCodeServer
μCode[10] is a lightweight software agent framework for mobile devices (small
footprint - the core package is less than 18 Kbytes of jar file). It is a small Java
API that aims at providing a minimal set of primitives to support mobility of
code and state (i.e., Java classes and objects). It provides good abstractions for
doing only a single thing, that is, moving code and state around. It also consti-
tutes the kernel, providing small and efficient mechanisms for code mobility.

4 Experiments on the Agent Module

Experimental Test Bed: We ran our experiments on a high performance/low
power SA-1110 (206 MHz) Compaq iPAQs H 3600, with 32 MB of SD RAM
and 32MB of flash ROM. The handheld devices are connected through a mo-
bile wireless network using a 2.4GHz wireless router. The operating system is

An Agent Module for a System on Mobile Devices 149

Mobile Device 1 Mobile Device n

1

Directory Service

2

3

4

μCode Client μCode Server μCode Client μCode Server

Fig. 3. Internal architecture of the agent module

56

58

60

62

64

66

68

70

First invocation Subsequent invocations

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

se
c)

Mobile agent Synchronous invocation

Fig. 4. Mobile agent vs Synchronous invocation - number of invocations

Windows CE. The mobile agent frame work on the iPAQ is μCode version 1.03.
We use jdk version 1.3 to code our programs and JVM for iPAQ is Jeode VM
Version 1.9. The DBMS of the directory server is Oracle 8i.

The proposed agent module for SyD replaces the SyDEngine-SyDListener
pair. Here we compare synchronous invocation (SI) via SyDEngine-SyDListner
pair with mobile agent (MA) using: response time based on multiple method
invocations and response time based on size of data processed.

Response time is the total time required to execute a method call on a remote
host. Number of method invocations is the number of times a particular method
is called. In order to be consistent, we transferred a message of size 16 kilo bytes
and the results of it are shown in Fig. 4. For a single method invocation, the

150 P. Madiraju et al.

50

70

90

110

16 48 128 336 1536 13936 41792

Size of data processed(bytes)

R
es

po
ns

e
ti

m
e

(m
s)

Mobile agent Synchronous invocation

Fig. 5. Mobile agent vs Synchronous invocation - size of data processed

average response time of synchronous invocation (SI) of SyDEngine-SyDListner
pair is much higher than mobile agent (MA) approach. However for subsequent
method invocations, SI response time gets better. SI starts out with a higher
response time and this could be attributed to the fact that, it needs to load
stubs and skeletons and also factors such as marshalling/un marshalling and
the implicit object serialization that is involved with any RMI-based approach.
However for subsequent method calls, the client side stubs and skeletons are
already bound to the server and RMI registry look up is faster. In the MA
approach, the only initialization time is the time required for the μCode to start
up. For all other subsequent method invocations, it’s the same.

Fig. 5 gives the comparison based on the size of the data processed. The
response time for MA is much lesser than SI. In the MA approach, data is
processed at individual sites and processed data is sent across the network. In
the SI approach, data is collected from multiple sites and then processing takes
place on the gathered data and therefore results in higher response time.

5 Related Work

Our design of the mobile agent module is chiefly inspired from Limone[1]. Limone
provides rapid application development over ad hoc network’s consisting of log-
ically mobile agents and physically mobile hosts. Lists of agents that satisfy the
policy of host agent are stored into its acquaintance list. The host agent retains
full control of the local tuple space since all remote operations are simply re-
quests to perform a particular operation for a remote agent and are subject to
policies specified by the operation manager. This high degree of security encour-
ages a collaborative type of interaction among agents. This coordination model
and middleware promises to reduce development time for mobile applications.
We don’t have the concept of a tuple space in our model description. However
limone uses tuple space, as it’s underlying model. Our directory service serves
the purpose of the acquaintance list.

A programmable event based middleware[3] is developed for pervasive mobile
agent organizations. A concept of organization oriented framework for the design

An Agent Module for a System on Mobile Devices 151

of mobile agent application in pervasive computing scenarios is discussed. This
middleware is an event-based approach based on the definition of a minimal
event-kernel, which is suitable for deployment in resource-constrained devices.

A mobile agent based PC Grid[2] is a mobile agent based middleware where re-
mote computers users wish to mutually offer their desktop computing resource to
other internet group members. Each agent represents a client user, which carries
out their requests, searches for the available resources, executes the job at suitable
computers, and migrates it to others when the current ones are not available.

Data Lockers[15] is another research activity under mobile agent middleware.
Data lockers allow users of mobile devices to rent space at the fixed network.
This helps mobile users to perform computations remotely with out bothering
about the memory space and computation capacity of mobile devices.

A plenitude of research is available on mobile agent based approach for mid-
dleware as discussed in the programmable event based middleware[3], PC Grid[2]
and Data Lockers[15]. However, we have not seen much research comparing the
different middleware approaches. A close line of study to ours can be found in
[9]. They discuss performance evaluations of different java based approaches to
web database access. We compare middleware approaches and [9] compares java
based approaches.

6 Conclusions

We already have a full scale design and implementation of a RMI-based middle-
ware (SyD). We proposed the design and implementation of an agent module
for SyD. We have implemented, evaluated and compared the agent module ver-
sus the synchronous invocation of SyDEngine-SyDListener Pair. We have also
presented performance comparisons of average response time based on varying
number of method invocations. We have not taken in to account of the security
drawbacks that mobile agents imposes on the system. The security aspect is
ignored in this paper as it is out of the scope for the performance evaluations.

As part of the future work, we plan to carry out experiments and do perfor-
mance evaluations based on: response time(n), where n is the no. of disconnec-
tions and the agent framework overhead vs the SyDListener overhead. We aim
to design and implement a hybrid engine that extracts the best of the features of
agent and RMI approaches by automatically switching between them depending
on a decision algorithm.

References

1. C.-L. Fok, G.-C. Roman, and G. Hackmann. A lightweight coordination mid-
dleware for mobile computing. Technical report, Technical Report WUCS-03-67,
Washington University, Department of Computer Science and Engineering, 2003.

2. M. Fukuda, and Suzuki N. Tanaka, Y., L.F. Bic, and S. Kobayashi. A mobile-agent-
based pc grid autonomic computing. In Fifth Annual International Workshop on
Active Middleware Services (AMS’03), pages 696 – 703, Seattle, Washington, June
25 - 25, 2003.

152 P. Madiraju et al.

3. M. Gazzotti, M. Mamei, and F. Zambonelli. A programmable event-based mid-
dleware for pervasive mobile agent organizations. In 11th IEEE EUROMICRO
Conference on Parallel, Distributed, and Network Processing, pages 517–525, Gen-
ova, Feb. 2003.

4. G. Glass. Overview of voyager: Objectspace’s product family for state-of-the-art
distributed computing. Technical report, ObjectSpace, 1999.

5. C. G. Harrison, D.M. Chessm, and A. kershenbaum. Mobile agents: Are they a
good idea? Technical report, Research Report, IBM Research Division, 1994.

6. G. Karjoth, D. Lange, and M. Oshima. A security model for aglets. IEEE Internet
Computing, 1(4), 1997.

7. R. Koblick. Concordia. In Communications of the ACM, march, 1999.
8. P. Madiraju and R. Sunderraman. A mobile agent approach for global database

constraint checking. In ACM Symposium on Applied Computing (SAC’04), pages
679–683, Nicosia, Cyprus, 2004.

9. S. Papastavrou, P.K. Chrysanthis, G. Samaras, and E. Pitoura. An evaluation
of the java-based approaches to web database access. International Journal of
Cooperative Information Systems, 10(4), 2001.

10. Gian Pietro Picco. μcode: A lightweight and flexible mobile code toolkit. In Mobile
Agents, Procs. of the 2nd Intl. Workshop on Mobile Agents (MA), volume 1477,
pages 160–171. Springer, LNCS, Stuggart, 1998.

11. Sushil K. Prasad, V. Madisetti, et al. System on mobile devices (SyD): Kernel
design and implementation. In First Intl. Conf. on Mobile Systems, Applications,
and Services (MobiSys), Poster and Demo Presentation, San Francisco, May 5-8,
2003.

12. Sushil K. Prasad, V. Madisetti, et al. Syd: A middleware testbed for col-
laborative applications over small heterogeneous devices and data stores. In
5th ACM/IFIP/USENIX International Middleware Conference, Toronto, Ontario,
Canada, October 18th - 22nd, 2004.

13. Sushil K. Prasad, Vijay Madisetti, et al. A middleware for collabora-
tive applications over a system of mobile devices (SyD): An implemen-
tation case study. Technical report, Technical Report CS-TR-03-01, De-
partment of Computer Science, Georgia State University, July 16, 2003.
http://www.cs.gsu.edu/~cscskp/PAPERS/CONF/TechRep/SyDTechReport.doc .

14. Sushil K. Prasad, M. Weeks, et al. Toward an easy programming environment
for implementing mobile applications: A fleet application case study using SyD
middleware. In IEEE Intl Workshop on Web Based Systems and Applications, at
27th Annual Intl. Computational Software and Applications Conf. (COMPSAC),
pages 696 – 703, Dallas, Nov 3-6, 2003.

15. Y. Villate, A. Illarramendi, and E. Pitoura. Data lockers: Mobile-agent based mid-
dleware for the security and availability of roaming users data. In IFCIS Interna-
tional Conference on Cooperative Information Systems (CoopIS’2000), September,
2000.

Multi-agent System Technology for P2P
Applications on Small Portable Devices

Martin Purvis, Noel Garside, Stephen Cranefield,
Mariusz Nowostawski, and Marcos De Oliveira

Department of Information Science, University of Otago,
Dunedin, New Zealand

(mpurvis, ngarside, scranefield, mnowostawski,
moliveira)@infoscience.otago.ac.nz

Abstract. In this paper we discuss architectural design issues and trade-
offs in connection with our experiences porting our agent-based plat-
form, Opal, to the Sharp Zaurus personal digital assistant (PDA). At
the present time, the Zaurus is able to run the Java-based Opal platform
with RMI, HTTP and JXTA (but not JXME) as message transports.
There were many adjustments that had to be made in order to establish
JXTA functionality over Java Personal Profile on the Zaurus systems,
but it may be an easier process in the future if some of these changes are
incorporated into the JXTA standard. The wireless and Bluetooth capa-
bility of the Zaurus make it ideal for bridging the gap between Bluetooth
networks and traditional networks. The extension of mobility to distrib-
uted Agent-based systems will be a significant growth area in future
agent research, and the Zaurus PDA a glimpse into the future function-
ality that mobile distributed agent applications may provide. We also
discuss how Opal’s unique support for micro agents may facilitate the
deployment of advanced agent systems on future medium- and small-
footprint devices.

Keywords: MAS technology, portable devices, JXTA, P2P.

1 Introduction

Developments in and widespread deployment of telecommunications and distrib-
uted system technology have led to increased interest in the ideas of multi-agent
systems [1]. Since the notion of software agents represents an embodiment of a
distributed and autonomous form of peer-to-peer (P2P) computing, the prac-
tical deployment of multi-agent systems will be facilitated if the agent system
technology can interoperate with standard infrastructural P2P services wher-
ever possible. We have made progress in this area by developing Opal [2], a
standard agent-based software platform in Java that provides support for the
agent communication protocols specified by the Foundation for Intelligent Phys-
ical Agents (FIPA) [3], and extending the Opal platform [4] so that it can be
used in conjunction with JXTA [5], a standard for P2P interactions.

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 153–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 M. Purvis et al.

In this paper we discuss a further issue associated with agents and peer-
to-peer computing: the use of this technology in the context of small hand-
held devices employing wireless communications. In particular, we describe the
design trade-offs associated with the deployment of multi-agent system and P2P
technology (in our case, with the Opal+JXTA system) onto personal digital
assistants (PDAs). In this connection, consideration must be given to a number
of down-to-earth issues in order to realize a practical agent-based P2P system
on a PDA physical platform.

2 Opal and JXTA

The Opal FIPA Platform includes the KEA micro-agent framework [4,6]. At a
high level intelligent software agents can be treated as individual FIPA-compliant
(they employ the FIPA ACL communication protocols) agents. Individual tasks
within such agents are delegated to appropriate micro-agents. This approach
offers the advantage of reusing components, together with late dynamic binding
between particular roles.

2.1 JXTA

Opal has been built to conform to the latest specification of the FIPA Abstract Ar-
chitecture (FIPA AA). At the present time the Transport Service, as specified in
the FIPAAA, is used solely to provide a communication protocol forACL messages
between two end-points. But the Transport Service does not cover some aspects of
agent communication, such as discovery,multicasts or broadcasts. Since these were
needed for our application, we implemented them using our own proprietary inter-
faces and protocols. To facilitate the dynamic discovery of peers on the network
and peer-to-peer messaging, we use the JXTA infrastructure [5], which is a set of
open protocols that allow any connected device on the network to communicate
and collaborate in a P2P manner. Thus the standard set of transport protocols in
OPAL (IIOP and HTTP) has now been extended to include JXTA. In addition to
the protocols, Project JXTA also maintains an up-to-date open-source Java imple-
mentation of the JXTA protocols. We use this JXTA source code, because it has
been developed and validated by the Project JXTA community. In this section we
describe how P2P JXTA communication can coexist with FIPA-prescribed agent
communication.

Apeer inJXTArepresents anynetworkeddevice that implements oneormore of
the JXTA protocols. To send messages, peers use pipes, which offer asynchronous,
unidirectional message transfer for service communication. JXTA advertisements
are metadata structures (in XML) used to describe and announce the existence of
peer resources. Peers discover resources by searching for their corresponding ad-
vertisements and may cache any discovered advertisements locally.

The Project JXTA community has also been working on providing implemen-
tations of portions of the JXTA protocols for the Java 2 Mirco Edition (J2ME),
and this work has been referred to as JXME [5]. We will discuss JXME specifics in
context below.

Multi-agent System Technology for P2P Applications 155

2.2 Messaging

Messaging at the lowest micro-agent level is implemented using method calls,
and its semantics is expressed simply by method calls signatures. At a higher
level, micro-agents employ a limited communication model of communication,
based on the notion of goals, declarations, and commitments, with the semantics
expressed by UML models of goals and their relationships. At the highest level
agents use standard FIPA ACL, augmented with the notion of object-oriented
ontologies represented in UML [7].

Since the FIPA ACL does not currently have a notion of an agent group, and
thus has no notion of a public announcement to a group, JXTA communication
can fill the gap and play a useful role. We use a special service agent, called a
Peer agent, to facilitate this process: there is a single Peer agent for each JXTA
peer (i.e. a single Peer agent per machine). Communication between Peer agents
is performed by means of JXTA announcements and pipes (thus outside nor-
mal FIPA ACL messaging). Practically, this means that public announcements
are done via JXTA announcements and ordinary peer-to-peer communication is
performed via standard FIPA messaging mechanisms transmitted via the JXTA
Pipe infrastructure. All the public announcements are done in an asynchronous
(and unreliable) manner over the standard JXTA Content Advertisements. Since
the Peer also has a standard Pipe for FIPA text-based ACL messaging, all com-
munication can be considered to be performed over JXTA.

In our P2P implementation there is an additional transport layer between
the FIPA agent and the ordinary (FIPA-compliant) Transport System. This
layer is provided by the specialist Peer agent, which intercepts messages from
individual agents and propagates them appropriately for the P2P environment.
For messages addressed to a single individual agent registered on the local peer,
the Peer agent simply forwards the message directly to the recipient. If the
receiver is registered on a remote peer, the local Peer agent passes the message
to that recipient. Peer agent, which in turn passes the message down to the
individual recipient. If, however, the original message is a public announcement,
then the local Peer agent passes the announcement to all locally registered agents
and also passes it to all other Peer agents, which in turn pass it down to all their
local agents. The Peer agent is implemented on a level below the FIPA ACL
level, so its communications are not entirely based on the FIPA ACL itself, but
rather on a proprietary protocol implemented on the OPAL platform.

3 The PDA Platform

The PDA platform that we used is the Sharp Zaurus SL-c700 hand-held device.
Standard versions include a VGA (640x480) colour screen, 64 MB of RAM, and
can run the Java Personal Profile (Java PP) version of J2ME under the Linux
operating system. Wireless communication with other devices can be performed
via WiFi (IEEE 802.11b networking [8]) and Bluetooth [9].

The Sharp Zaurus represents a platform with power midway between that of
current workstations and cell phones. Although it is more powerful than current

156 M. Purvis et al.

cell phones, its memory resources and Java JDK are limited when compared with
standard computers. However, its existing computing resources may provide a
useful testing environment for cell phone on the horizon [10].

3.1 Zaurus Resources: JDK, Memory, Bandwidth, and Power
Requirements

The Zaurus runs Personal Profile J2ME, which is the equivalent of JDK1.3 minus
deprecated methods and Swing. While Swing can be run on the Zaurus, it runs
very slowly and takes more memory than is desirable. Although the Zaurus has
64 MB of flash RAM for storing files and running programs, it appears to have
only about 8 MB of RAM for running Java applications. The Zaurus also has
expansion slots on its chassis for compact flash (CF) and Security Digital (SD)
RAM cards. The CF slot is used for both the wireless and Bluetooth cards, so
SD RAM was used for secondary storage. As a result, it is possible to run a 30
MB JAR file off of the SD RAM card.

Bandwidth under different networks varies widely, and thus the amount of
agent messaging that can be performed in agent applications under different
network configurations must be taken into account. For example when employing
JXTA networking, a small hand-held device running JXME would have to poll
larger devices (that are capable of running full JXTA) for relevant messages
rather than receiving all the messages on the network and filtering them itself.
This polling situation would require more message exchanges.

The use of WiFi networking is demanding for the electrical batteries available
for the the Zaurus, and the Zaurus can run for little more than one hour when
not on mains power. This means that in the near term Bluetooth networking,
with its lower battery demands, may be a better wireless network option than
802.11.

4 Opal Agent Platform on the Sharp Zaurus

Our porting approach was to attempt, as a proof of concept, to port an agent
application that was built with Opal (an electronic trading application discussed
in [4]) that included Opal and the developed application, which employed a Petri
net tool [11], onto the Zaurus. The agent application was intended to feature
dynamic (runtime) compilation of Petri nets, so the code for the custom Java
dynamic compiler was altered in an to attempt to allow dynamic compiling on
the Zaurus.

4.1 JXTA and Java Personal Profile (Java PP)

Since JDK 1.4 incorporates more security features (than JDK 1.3), it may be
difficult to keep JXTA compatible with Java PP. One suggested approach might
be to have support for JDK1.3 a core feature in JXTA, with additional secu-
rity features left to the individual developers. Since JXTA is open source, it

Multi-agent System Technology for P2P Applications 157

would be possible to re-engineer the source files and change the security code
when required, but this option would become difficult to maintain as new JXTA
functionality is added. Though it may be inappropriate to restrict full JXTA to
JDK1.3 without deprecated methods and Swing, it may be feasible to create a
middle level between JXTA and JXME, which we might call JXPP. The primary
advantage of a JXPP would be the recognition of a middle tier that accommo-
dates the rising capabilities of newer mobile telephones and PDAs, which need an
intermediate step between JXTA and JXME. JXPP would have all the current
functionality of JXTA, but would not limit the development of JXTA in terms
of using JDK1.4 or evenJDK1.5. It could be developed by people interested in
rising efficiency technologies rather than leading-edge full power technology. It
could possibly represent those who are concerned with producing the current
technology, but in more compact packages and lower costs.

4.2 Opal Supporting Agent Advertisements to Groups

JXTA supports sending messages to groups, whereas FIPA does not specify send-
ing messages to groups of agents. Since Opal is modular (transport is a separate
modular layer), each transport used should also support sending messages to
groups. Under RMI, groups can be simulated by opening registries listening on
different ports, e.g. 1099, 1100, etc. Under HTTP subnets can simulate groups,
with multicasting used to send messages to all members of each subnet. P2P
networks groups are significant, since multicasting is an efficient and lightweight
message transport, but they may not be scalable if the number of peers on the
subnet are not kept to within reasonable limits. The extension of the FIPA ACL
protocols to include groups is an ongoing area of research [4].

5 Micro-agents and MIDP

One approach for reducing agent application size for operation on smaller devices
is the use of micro-agents [6]. Micro-agents are a finer-grained implementation of
agents, which communicate using method calls rather than declarative represen-
tations of FIPA-specified speech acts that then employ lower-level transports,
such as IIOP. Micro-agents can run in one thread, rather than having separate
threads for each the agent object, which could potentially lead to a significant
overhead savings on for applications running on devices operating under the
MIDP [12] version of J2ME (typical cell phones, for example).

5.1 Issues Constraining the Minimal Size for a Multi-agent
Platform on PDAs

To achieve a flexible architecture for multiple platforms, the intention was to
establish core classes for J2ME, with supplemental classes for J2SE. This would
involve removing the Swing-based graphical user interface from the core classes,
removing references to JDK1.4 from core classes, and removing calls to JDK1.3

158 M. Purvis et al.

deprecated methods. The underlying transports JXTA, IIOP, RMI, and HTTP
all add size to the OPAL platform, but are more elegant, flexible and robust than
listening on ports. By reducing the ported application to packages that only the
Zaurus uses, the JAR file was reduced to 7 Mb. Reducing Opal all the way down
to MIDP presents some interesting challenges in terms of reducing Opal’s size.
JXTA and HTTP will work as transports, but RMI and IIOP will not, since they
require too many resources. Since JXTA now operates on TINI [13] devices, it
should work on MIDP mobile phones. Bluetooth automatically discovers other
devices within range, so peer discovery should not be problematic. Bluetooth
scatternets are made up of up to ten personal-area networks (PANs), or piconets.
A piconet has a master and up to seven slaves, where all communication is
through the master, and slaves never communicate directly. The Zaurus would
make a good wireless P2P group master, administering the smaller slave devices
and then communicating via wireless to an infrastructural network. Bluetooth
devices, such as TINI devices and mobile telephones, will probably only poll for
services like JXTA.

One change that would facilitate the porting of Opal to MIDP concerns the
XML parser in Opal. Opal currently uses a fully featured XML parser, Xalan [14],
which is 1.6 MB in size. Changing to a J2ME XML parser, such as MinML [15]
(14 KB in size) would be appropriate for smaller devices, such as those running
Java MIDP. Although these CML packages may not have all the features required
for Opal, J2ME-specific code could be developed to use them on the Zaurus or
other small devices. This is a change we intend to make in the near future.

6 Discussion

Current PDAs, e.g. the Zaurus C7x0, can run a full JXTA (or Agent) platform,
which means that the periphery of the network has now been pushed to mo-
bile telephones, and embedded devices (using, for example, TINI [13]). Mobile
phones and other MIDP devices have limited storage, memory and bandwidth
(especially limited by their slow front side busses) but can still run JXME (e.g.
JXME works on TINI devices). A possible P2P micro-device architecture could
involve a MIDlet able to run on a mobile phone that could act as a container
or mini platform for KEA micro-agents. The MIDlet could communicate with a
JXTA relay running on a Zaurus device. This would allow an implementation
with application-specific code that removed overheads (such as XML parsers)
e.g. parts of agent messages could be passed to the MIDP device as strings. It
would also make it easier to provide a graphical user interface to create agent
messages.

6.1 Mobile P2P Agent Application Architectures

The mobility of software agents, as envisioned in the customary sense, involves
an agent moving physically from one device to another by using a transport,
such as RMI. There have not been many applications, however, for which this

Multi-agent System Technology for P2P Applications 159

physical movement has been identified as required or significant, because an
agent could simply communicate with another agent almost anywhere directly
via, say, HTTP, rather than having to move from one device to the next. In
connection with PDAs, like the Sharp Zaurus, there is a sense of mobility associ-
ated with the ability of the Zaurus to move to different places. This is significant
for Bluetooth and wireless networks: the Zaurus can move to within a remote
Bluetooth PAN (or Piconet) and then communicate with agents there, which
may not have access to a transport like HTTP. Fixed Bluetooth devices also
have a geographical location, so it can be inferred that the Zaurus is within 10
-100 metres of the Bluetooth devices within range. This type of mobility offers
many advantages for a PDA like the Zaurus: it can visit and administer remote
Piconets. If a piece of machinery has a TINI device fitted to it, it may be able to
communicate exceptions to the Zaurus that will allow the problem to be quickly
fixed or reset. In workflow situations, jobs could be assigned to the closest work-
ers by their position relative to a bluetooth location. Location awareness could
also trigger changes to the an application interface running on a PDA, e.g. an
inventory application could be automatically enabled in the warehouse, while a
customer service application is activated on the shop floor.

The Zaurus in a JXTA-connected agent application could act as a bridge
between a Bluetooth network and a fully featured wireless network. Since the
802.11b bandwidth is not as high as some broadband networks, the agents on
the Zaurus PDA could poll agents on the broadband network for relaying to
agents on the Bluetooth network, rather than them receiving all the messages
on the network. The Bluetooth agents could in turn poll the Zaurus for their
specific messages, thus reducing the flow of messages to a reasonable amount in
terms of the local network type.

7 Conclusion

The Sharp Zaurus proved fully capable of running the entire full-sized Opal plat-
form, and the major transports used for agent messaging, JXTA, HTTP, and
RMI, were fully operational. This means that P2P agent-based computing can
incorporate hand-held wireless devices like the Zaurus, and it was not necessary
to create an entirely separate Opal release branch for running on Zaurus-sized
devices. We intend to restructure (repartition) the Opal internal architecture in
order to use J2ME components for loading the platform onto the Zaurus-type de-
vices, and this should facilitate more sophisticated agent-based P2P applications
to be run in distributed wireless environments.

Our work indicates that now mid-range (in terms of power) devices, such as
Sharp Zaurus PDAs, can operate as P2P rendezvous nodes, while the smaller
MIDP-running devices can operate as individual peers. The Opal agent system
currently allows for full-sized agents on the Zaurus devices and smaller (possibly
only KEA micro-agents) on the MIDP devices. Thus using the notion of JXTA
P2P architectures and hierarchically refinable agents, agent architectures can be
effectively spread across a wide range of wireless computing architectures.

160 M. Purvis et al.

References

1. Jennings, N.R.: Agent-oriented software engineering. In: Proceedings of the 12th
International Conference on Industrial and Engineering Applications of AI. (1999)

2. Purvis, M., Cranefield, S., Nowostawski, M., Carter, D.: Opal: A Multi-Level In-
frastructure for Agent-Oriented Software Development. Technical Report 2002/01,
University of Otago, Dunedin, New Zealand (2002) ISSN 1172-6024.

3. Foundation For Intelligent Physical Agents (FIPA): Fipa 2001 specifications.
http://www.fipa.org/specifications/ (2003)

4. Purvis, M., Nowostawski, M., Cranefield, S., Oliveira, M.: Multi-Agent Interac-
tion Technology for Peer-to-Peer Computing in Electronic Trading Environments.
In Moro, G., Sartori, C., Singh, M., eds.: Second International Workshop on
Agents and Peer-to-Peer Computing, Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2003), Melbourne Aus-
tralia (2003) 103–114

5. Project JXTA: Jxta specifications. http://www.jxta.org (2003)
6. Nowostawski, M., Purvis, M., Cranefield, S.: KEA - Multi-level Agent Infrastruc-

ture. In: Proceedings of the 2nd International Workshop of Central and Eastern
Europe on Multi-Agent Systems (CEEMAS 2001), University of Mining and Met-
allurgy, Krakow, Poland (2001) 355–362 http://www.sf.net/projects/javaprs.

7. Cranefield, S., Purvis, M.: A UML Profile and Mapping for the Generation of
Ontology-specific Content Languages. Knowledge Engineering Review, Special Is-
sue on Ontologies in Agent Systems (2002) 21–39

8. http://grouper.ieee.org/groups/802/11/ (2004)
9. http://www.bluetooth.com/ (2004)

10. http://www.infoworld.com/article/03/02/13/HNmotolinux 1.html/ (2003)
11. Nowostawski, M.: Jfern, version 1.2.1. http://sf.net/projects/jfern (2002)
12. http://www.micronova.com/ZAURUS/index.html/ (2004)
13. http://www.ibutton.com/TINI/, http://tini.jxta.org// (2004)
14. http://xml.apache.org/xalan-j// (2004)
15. http://www.wilson.co.uk/xml/minml.htm/ (2004)

Coordinator Election Using the Object Model in
P2P Networks

Hirokazu Yoshinaga, Takeshi Tsuchiya, and Keiichi Koyanagi

Graduate School of Information, Production, and Systems, Waseda University,
2-9, Hibikino, Kitakiyushiyu, Fukuoka, Japan

yoshinaga@akane.waseda.jp, tuchiya@suou.waseda.jp,
keiichi.koyanagi@waseda.jp

Abstract. We propose the ACE (Adaptive Coordinator Election) plat-
form that elects and relocates a coordinator adaptively in P2P networks.
In collaborative applications, a coordinator mediates synchronization,
consistency, sequencing and delay difference. However, it is difficult to
decide a coordinator in applications used in P2P networks because of
some characteristics of network, e.g., network instability, and differences
in physical networks and devices for participants. The ACE platform
elects and relocates a coordinator dynamically according to environmen-
tal metrics obtained from participants. Each metric has a priority and
weight to allow a coordinator to be chosen according to the purpose of
applications. We implemented our platform using the JXTA framework
and tested it. The results show the feasibility of adaptive coordinator
relocation in P2P networks.

1 Introduction

The Internet environment has dramatically changed beyond our expectations
and is progressing toward resource ubiquity such as network connections, com-
puting devices, and contents in edge devices. A ubiquitous network in which all
devices can connect to networks and get information at anytime is expected. In
that network, devices in different physical networks will interconnect with each
other and can share information or collaborate. Some applications can satisfy
some of those requirements, but not as much as we would like. Groove [2] en-
ables users to share information such as schedules or files using a group space.
Users can connect with each other via a fixed server. Gnutella[3] enables users to
share files by transferring messages among users without central servers. It leads
to an active use of information in an environment with ubiquitous resources.
Collaborative tools like MSN Messenger [4] and AOL Messenger [5] enable users
to communicate in real time via a central server. Nowadays people increasingly
want to share information without being dependent on their physical networks
in such a ubiquitous resource environment. We have developed an application
for collaboration called JXCube (Jxta eXtreme Cube) in the JXTA [6] project.
This is a fully distributed collaborative application and it enables users to work

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 161–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

162 H. Yoshinaga, T. Tsuchiya, and K. Koyanagi

peer

peer

peer peer peer

peer

peer peer

Transport Network

Overlay Network

Virtual Mapping

NATFirewall

HTTP

Fig. 1. Overlay Network

together without a fixed central server. JXCube [7] offers a secured collabora-
tive work space through the use of user groups and encrypted messages, plug-in
collaborative functions, and replication of users work space having same iden-
tity. This paper shows the architecture for relocating the node that mediates
collaborative work (coordinator) in fully distributed environments such as P2P
networks.

2 Collaborative Work in a P2P Network

2.1 P2P Networks

We stand for a peer-to-peer(P2P) network [1] as a distributed networking tech-
nology in the application layer of the TCP/IP reference model. It is possible
to construct an overlay network using UUID (Universally Unique Identifier) in-
stead of using IP addresses on a physical network (Fig. 1). That is, P2P offers
a logical network on top of underlying networks. Even if users are in different
networks and use different transport protocols, they can communicate with each
other via the overlay network. For example, if one user can use only HTTP in a
company and another can use TCP at home, they can communicate with each
other via a logical communication path. In that scenario, a node with a global
IP address that offers HTTP service act as a broker for these two, enabling them
to communicate with each other. Also, users use not only a wired network with
fixed PCs, but also a wireless network like 802.11x with mobile devices such as
laptop PCs, PDAs, and cell phones. These mobile devices fit into a P2P network
by using overlay functions, even if their topology changes continually.

JXTA and Gnutella support some kinds of overlay functions. JXTA is a set
of P2P protocols and a framework. It is consisted of edge peers, relay peers,
and rendezvous peers. Edge peers are the most common. A relay peer forwards
messages on behalf of a peer that cannot directly address another peer (e.g., in
NAT/firewall environments), bridging between different physical and/or logical
networks. A rendezvous peer maintains resource information (advertisements)
that an edge peer requests to find other peers, groups, and communication pipes.

Coordinator Election Using the Object Model in P2P Networks 163

Coordinator

ACE platform

ACE platform

ACE platform

ACE platform

APP

APP
APP
APP

APP

APP

ACE platform

APP

move session
move session

move session

change coordinator

Fig. 2. Dynamic Relocation of an Adaptive Coordinator

And also, JXTA supports peer group that is a collection of peers that have agreed
upon a common set of services. On the other hand, Gnutella is a P2P protocol
that was basically developed for file sharing. It constructs a self-organized net-
work of peers transferring messages among themselves (flooding). A new version
of Gnutella (Gnutella2) now has scalability for routing by supporting two types
of peers: leaf nodes and hub nodes. Leaf nodes are edge nodes forming the net-
work. Hub nodes maintain resources for leaf nodes to communicate with other
leaf nodes. The characteristics of a P2P network are as follows.

(1) The network is constructed by multi-hop routing.
(2) The network is unstable because changes in dynamic topology caused by

nodes joining or leaving.
(3) All nodes act equally. There are no explicit roles.
(4) It covers a heterogeneous transport environment where device types, capa-

bilities, and communication methods are different.

2.2 Collaborative Work on a P2P Network

It is necessary to mediate work for synchronization, consistency, sequencing,
and delay differences in applications such as schedule management, videocon-
ferencing, online games, and other collaborative applications. For examples, a
schedule management application must assure consistency among users. Also,
a videoconferencing application must mediate delay differences to keep commu-
nication consistency. That is, it is necessary for collaborative applications to
transfer some events such as working events or result events in the same se-
quence or at the same time. In this paper, we define these issues as a mediation
problem. In previous collaborative work on a network, there were two types of
methods for resolving it: the server model and the distributed model. The server
model collects messages to a one node from users although it may be overloaded.
On the other hand, in the distributed model, each node must propagate event
messages to all nodes by broadcasting or multicasting. This increases of network
traffic. And each node must execute complicated mediation work. We chose the
server model because we assume that collaborative worker number only up to
a few dozen people so the load will be low; it thus is easy to maintain event
messages and it is simple to implement it.

164 H. Yoshinaga, T. Tsuchiya, and K. Koyanagi

3 Adaptive Dynamic Relocation of Coordinator

3.1 Characteristics of ACE Platform

The basic model for ACE (Adaptive Coordinator Election) platform that we
propose is shown in Fig. 2. The basic requirements are follows.

(1) Optimal coordinator selection for collaborative applications
(2) Transparent relocation of a coordinator for collaborative applications
(3) Crash coordinator detection automatically
(4) Low dependence on OS and collaborative applications

It is necessary to decide the optimal coordinator according to environmental
information that changes dynamically such as routing information by user par-
ticipation, secession, and user movement, network use rate, CPU and memory
use rate for each device, battery remaining rate and so on (requirement 1). Also,
it is necessary for users to keep using applications so they do not have to recon-
nect when the coordinator is replaced (requirement 2). And it is necessary to
keep using applications without stopping the system when a coordinator crashes
(requirement 3). Moreover, it is possible to correlate with various collaborative
applications by separating this platform from them (requirement 4). The relo-
cation of a coordinator treated in the ACE platform can be regarded as a one
of the leader election problem in the distributed system of old models such as
[8], [9], and [10]. For this problem, an algorithm elects the only node; a lot of
research has been done on this. Moreover, some research [11] and [12] treats
the leader election problem on an ad hoc network. Reference [11] describes an
algorithm that elects a leader using multicast and reference [12] shows an algo-
rithm in which the node located at the center of the topology becomes a leader
in an ad hoc network. Those studies do not meet the requirements mentioned
above. ACE platform is built to satisfy the point of electing the leader (coordi-
nator) in P2P networks including a wide area network based on environmental
information about nodes that composes a network.

3.2 Basic Operation

ACE platform operates according to the following procedure when a user newly
participates in or leaves from a collaborative work space (Fig. 3).

(1) Each node searches for a current coordinator using ALM (Application Level
Multicast).

(2) A coordinator responds to the request if it exists.
(3) Each node acquires environmental information at constant intervals.
(4) Each node transmits environmental information to a coordinator.
(5) The coordinator sends an ACK message to each node.
(6) The coordinator elects a new coordinator and a candidate one.
(7) The old coordinator transmits the relocation data to the new one.
(8) The new coordinator notifies all members of the change.

166 H. Yoshinaga, T. Tsuchiya, and K. Koyanagi

(1) One node does not send an ACK message after a fixed time has passed for
an environment metric transmission.

(2) That node is considered to have node crashed, so the node that discovered
it asks for a candidate coordinator.

(3) The new coordinator notifies all nodes of the change.

The waiting time of the ACK message is set dynamically using the RTT
values of participants. Also, candidate coordinators are selected according in
ascending order in (2). After (3), the process continues to basic operation (3) in
the previous paragraph.

3.4 Discussion About Environmental Information

The ACE platform dynamically decides a coordinator among users according to
the network and device status. This section discusses environmental informa-
tion (metrics) considered in ACE platform. It is possible to divide it roughly
into network-dependent metrics and device-dependent metrics as dynamically
changing information. The ACE platform uses the following metrics.

– Topology location
– Network usage rate
– CPU usage rate
– Memory usage rate
– Battery remaining rate
– Continuous network connection time

Network dependent metrics are topology location and network usage rate. The
topology location is a metric that becomes effective when users move frequently.
When users move frequently and the network topology changes dynamically, it is
possible to have a uniform number of hops and a response time to a coordinator
among nodes if central node becomes it. When users move, routing informa-
tion changes although user identity (overlay address, logical address) does not
change because of the overlay function. It is possible to distinguish user mobility
by getting routing information about each node. In the ACE platform, topology
location is calculated according to routing information and a coordinator then
decides a central node. The metric of network usage rate is effective when a phys-
ical network where a coordinator exists is overloaded because a message delay
will be generated between the coordinator and each node. In such a situation,
coordinator relocation can shorten the response time. In the ACE platform, the
average RTT is used to measure network usage rate. Device dependent metrics
include CPU usage rate, memory usage rate, and a battery remaining rate. CPU
and memory usage rates are effective when the load on the coordinator is high,
because mediation work and response time will worsen. In such a situation, co-
ordinator relocation can make the system better. The ACE platform uses these
average values to avoid temporary loads. The battery remaining rate is effective
when users are outside. For such a situation, it is necessary to reduce battery

Coordinator Election Using the Object Model in P2P Networks 167

Ace Mediation Policy
Metric.Period = 50000

Priority of Metric
Metric.Num = 6
Metric.Priority1 = ace.metrics.Location
Metric.Priority2 = ace.metrics.RTT
Metric.Priority3 = ace.metrics.BatteryPower
Metric.Priority4 = ace.metrics.MemoryUsage
Metric.Priority5 = ace.metrics.CPUUsage
Metric.Priority6 = ace.metrics.ContinuousTime

Coefficient of priority
Coefficient.Priority1 = 0.9
Coefficient.Priority2 = 0.7
Coefficient.Priority3 = 0.5
Coefficient.Priority4 = 0.4
Coefficient.Priority5 = 0.3
Coefficient.Priority6 = 0.1

Fig. 5. Mediation policy definition file

consumption so the user can work for a long time. In particulars, when partici-
pants are only mobile devices, it is better for a device with a high battery level
to become a coordinator. In the ACE platform, mobile devices will be targets.
It is necessary to consider the network connection times of nodes as an envi-
ronmental metric. If a device that has not worked for a long time becomes a
coordinator, traffic increases when the coordinator is relocated and then many
messages are transmitted in every time. It is possible to solve this problem by
having a node that has been connected for a long time becomes a coordinator.
Metric dependencies will be different for each application because there are a lot
of environmental metrics for nodes in a P2P network. The ACE platform can
decide the best node by considering several metrics with priority levels.

3.5 Mediation Policy Definition Technique

There are various kinds of collaborative applications such as a videoconferencing,
schedule management, and online games, and the purpose of using a coordinator
is different for each application. For example, videoconferencing or online games
use a coordinator to mediate delays and sequences among nodes. In that case,
if a node connected with a physical network where throughput is low becomes
a coordinator, it will cause bottlenecks. When all nodes are using mobile de-
vices, it is also necessary to consider the topology location and the battery level.
Moreover, a schedule management application needs a lot of processing power
to mediate consistency. In this case, system performance will improve if a node
with low CPU or memory use rate becomes a coordinator. That is, it is neces-
sary to define a policy for deciding a coordinator because the purpose of using
a coordinator is different for different applications. The ACE platform resolves
this problem by considering a few metrics. It defines the number of metrics, the
priority level, and the weight coefficient for each metric as shown in Fig. 5. The
number of metrics determines the number of environment metrics, the metric
priority levels set the priority of metrics corresponding to the purpose of the
coordinator, and the weight coefficients set the weight put on the priority of
metrics.

168 H. Yoshinaga, T. Tsuchiya, and K. Koyanagi

3.6 Coordinator Election Technique

In this section, we discuss the technique for electing a new coordinator. First, the
current coordinator decides the node order for each metric using those values it
received from all nodes. The following procedure shows how to decide the central
node order of the topology.

(1) The coordinator makes a connected graph using routing information trans-
mitted by all nodes. When relay nodes that are not participants exist, the
number of these nodes is allocated as the edge weight.

(2) The coordinator makes a minimum spanning tree using a width priority
search that makes itself the starting point and excludes closed paths.

(3) All leaf nodes are removed from that minimum spanning tree. Also, all leaf
nodes are removed from the partial tree.This is repeated until the partial
tree has only one node.

The node order is in descending order from the center, and closed path (2) or
leaf nodes (3) become new orders in order of those appearing. The network, CPU
and memory usage rates are sorted in ascending order using values from each
node. Also the battery level and continuous network connection time are sorted
in descending order. Next, the coordinator and candidate new coordinators are
elected from the ordered node by following procedure.

(1) Order weight Wk is added to the node order for each metric

Wk =
N + 1 − k

N
(k : order, N : nodenumber) (1)

(2) Weight coefficient Cmj is applied to each metric and metric score Si,j is
calculated for each node.

Si,j = Wk × Cmj (i : node, j : metric) (2)

(3) The sum of metrics score SUMi is calculated for each node.

SUMi =
j∑

Si,j (3)

(4) The node with the highest sum is elected as the new coordinator NEW and
the others become candidate coordinators.

NEW = max {SUM} (4)

If the elected coordinator is different from a current one, the change is no-
tified to all members. Also, candidate coordinators are used when the current
coordinator would crash.

Coordinator Election Using the Object Model in P2P Networks 169

OS (Linux, Windows)

Java VM

JXTA

Relocation
Module

PeerManager
Module

Metrics
Module

Mediation Module

APPAPPAPPAPP

Fig. 6. ACE Service software architecture (APP:application)

4 Implementation

4.1 ACE Service

The ACE platform is implemented by dividing it from various collaborative ap-
plications. As a result, it can handle various applications without implementing
complicated mediation logic in each application. Figure. 6 shows software ar-
chitecture of the ACE platform. The ACE platform was written in the Java
language to make it applicable to various OSs. It uses the JXTA framework to
compose a P2P network on a Java virtual machine and is implemented as a
JXTA peer group service called ACE Service. Peer group service is composed
of a collection of instances of the service running on multiple members of the
peer group. If any one peer fails, the collective peer group service is not affected.
We implement it as a peer group service for all nodes to use. ACE Service is
composed of four modules: Relocation Module, Peer Manager Module, Metrics
Module, and Mediation Module. The adaptive dynamic coordinator relocation
proposed in this paper is composed of only Relocation Module, Peer Manager
Module and Metrics Module without Mediation Module. The Mediation Module
offers mediation functions for i) synchronization, ii) consistency, iii) sequencing,
or iiii) delay differences.

4.2 Modules

The Relocation Module provides functions for electing a coordinator and relo-
cating it. Functions are implemented according to Basic operation of section 3.2,
Crash detection and a coordinator relocation technique of section3.3, and Media-
tion policy definition technique of section3.5 and Coordinator election technique
of section3.6. The Peer Manager Module is used only by a coordinator, and it
manages the presence and status of participants as a list. A coordinator adds or
updates the status of nodes online when a node joins a peer group and sends its
message. It also updates their status offline when a node leaves a peer group and
sends its message. Moreover, a coordinator removes their status from the list,
if it cannot receive their metric values after waiting for a predetermined time.
The Metrics Module provides a series of functions for operating environment
metrics and ranking them. It is composed of some objects that each stand for

170 H. Yoshinaga, T. Tsuchiya, and K. Koyanagi

a metric. And these objects are implemented as distributed objects [13] that
contain data and a series of procedures for operating it. Separating metrics from
other modules enables us to extend metrics and change their implementations
easily. All environment metrics use the same interface (Metric), so that these
metrics can be operated easily. Also, abstract definitions of metric classify each
environment metric according to that feature and simplify metric implementa-
tions. For example, the topology location metric and the network use rate metric
are defined as network metrics, and they defines a each communication method.
Metric objects are transmitted to a coordinator after the metrics values for each
node have been obtained. The coordinator ranks these objects with a ranking
procedure.

4.3 Handling the Delay Between Nodes

If participants are distributed widely in a physical network, then nodes far from
a coordinator experience delays in sending or receiving messages compared with
nearby nodes. Also, if nodes are in an environment where only http communica-
tion is accepted, there is a delay caused by the pooling time or protocol exchange
on a relay node. Thus, there are delay differences between the coordinator and
nodes in communication in an overlay network. Therefore, a coordinator may
judge that a node with a delay cannot send a message and the node joining
a collaboration work space. Even if a long waiting time is set, it is difficult to
decide that value because we cannot predict which network nodes are present.
In ACE Service, the coordinator’s waiting time is the maximum time (response
time of the most delayed node) of RTT from each node plus a fixed time. This
time is also used as the waiting time when each node receives an ACK message
from the coordinator.

5 Evaluation

We evaluated our model by testing whether it could elect a coordinator adap-
tively. In this experiment, we use the CPU metric and the Memory metric as
environmental metrics. The intervals for getting metric values for each node were
set to 50 s and the weight coefficients were set to 0.9 for CPU metric and 0.6 for
Memory metric. Figure. 1 shows experimental environment we used. And then
all node are connected with wired LAN using 100BaseTX. Figure. 7 stands for
the transition of RTT values between a coordinator when adaptive dynamic relo-
cation was used (Pattern1) and not used (Pattern2). The message length of RTT
was set to be 1 KB. In this experiment, three nodes (ACE NodeA, ACE NodeB,
and ACE NodeC) participated in a collaborative work space. ACE NodeA be-
came the coordinator in the first election in both patterns. In Pattern1, the
average RTT value from the beginning of the experiment until the load applied
was 371 ms, the value after 100 s of applying load to NodeA was 1206 ms, and
the value after relocation was 490 ms. That is, when the load was applied, the
RTT value from NodeC to the coordinator (NodeA) was about 81% higher than

Coordinator Election Using the Object Model in P2P Networks 171

Table 1. Experimental machine

Fig. 7. Progress of RTT value by relocation

before the load was applied to the coordinator. And NodeB which has a low CPU
usage rate, because the new coordinator after the next election. The RTT value
from NodeC to the coordinator (NodeB) decreased by about 61% compared with
after the load was applied. However, the memory usage rate hardly changed for
each node.

On the other hand, in Pattern2, the average RTT value from the beginning
of the experiment to before load application was 413 ms and the value 100 s after
the load was applied to NodeA was 1487 ms. That is, when load was applied,
the RTT value from NodeC to the coordinator (NodeA) increased by about
90% compared with before the load was applied to a coordinator. As a result,
the average RTT value was shortened to 997 ms using the adaptive dynamic
relocation compared with not using it. Although it took 60 s for the coordinator
to be relocated after applying the load, it is possible to relocate the coordinator
in the early stages during an overload by decreasing the metric acquisition and
election intervals.

6 Conclusion

In this paper, we proposed a method of dynamically relocating of the coordinator
which mediates synchronization, consistency, sequencing, and delay differences in

172 H. Yoshinaga, T. Tsuchiya, and K. Koyanagi

a P2P network without an explicit server. Our model elects a coordinator using
environmental metrics which change dynamically for each node. We implemented
our model as ACE Service using the JXTA framework and evaluated it. The
results confirmed that ACE Service elects an optimal coordinator among nodes
and relocates it adaptively according to environmental information. In the near
future, we will implement the Mediation Module and test ACE Service using
collaborative applications.

Acknowledgements

This work is partly supported by a specific project of WASEDA university
2003A − 950. Also part of this research is joint research with NTT DoCoMo.

References

1. Keiichi Koyanagi, Takashige Hoshiai, and Hidekazu Umeda, Proposal and Introduc-
tion on P2P Networking Technologies, IEICE Transactions on Communications,
VOL.J85 − B, NO.3, pp.319 − 332, 2002 − 3.

2. Groove Network, inc.: Groove Product Backgrounder, Corporate whitepaper, 2002.
3. Gnutella: http://www.gnutella.com/
4. MSN Messenger : http://messenger.msn.co.jp/
5. AOL Messenger: http://www.jp.aol.com/aim/
6. Project JXTA: http://www.jxta.org/
7. Project JXCube: http://jxcube.jxta.org/
8. Hector Garcia-Molina: Elections in a distributed@computing system, IEEE Trans-

actions on Computers, C-31(1) : 47 − 59, January 1982.
9. Singh G., Leader Election in the Presence of Link Failures: IEEE Trans, Parallel

and Distributed Systems, Vol.7, No.3, pp.157 − 171, 1996.
10. Fetzer, C., and Cristian, F.: A Highly Available Local Leader Election Service,

IEEE Trans Softw Eng, Vol.25, No.5, pp.603 − 618, 1999.
11. Royer, E.M., and Perkins, C.E.: Multicast Operations of the Ad-hoc On-Demand

Distance Vector Routing Protocol, Proc 5th Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MOBICOM), pp.207 − 218,
1999.

12. Suzuki, Y., Ishihara, S., and Mizuno T.: Relocation of a Mediation Function on a
Mobile Ad Hoc Network, IPSJ, Vol.43, No.12, pp.3959 − 3969, Dec. 2002.

13. Nakajima, T., Aizu, H., Kobayashi, M. and Shimamoto, K.: Environment Server: A
System Support for Adaptive Distributed Applications, Lecture Notes in Computer
Science, Vol.1368, pp.142 − 157, 1998.

The Dynamics of Peer-to-Peer Tasks: An
Agent-Based Perspective

Xiaolong Jin1, Jiming Liu1, and Zhen Yang2

1 Department of Computer Science, Hong Kong Baptist University,
Kowloon Tong, Hong Kong

{jxl, jiming}@comp.hkbu.edu.hk
2 Electrical Engineering Section, The School of Railway Mechanism of Lanzhou,

Lanzhou, 730000, China
yieytmz2@hotmail.com

Abstract. Grid computing aims at integrating geographically distrib-
uted computers and providing ‘super-supercomputers’ that can be seam-
lessly accessed by users all over the world. In peer-to-peer grids, numerous
tasks are distributed to grid nodes in a decentralized fashion. In this case,
two issues of interest are suitable computing mechanisms and the global
performance of the grid, specifically, the dynamics of task distribution
and handling. To address these issues, in this paper we present an agent-
based adaptive paradigm for peer-to-peer grids and further identify two
typical scenarios corresponding to task distribution and handling in this
paradigm. We provide two models to characterize the agent-based sce-
narios. Based on our characterizations, we identify the key features of,
and the effects of, several important parameters on the dynamics of task
distribution and handling in peer-to-peer grids.

1 Introduction

As a departure from traditional IT, grid computing aims at integrating and shar-
ing distributed computer resources and thus providing ‘super-supercomputers’
for users all over the world [1,2,3]. Because grids usually integrate numerous
distributed computers and sometimes it is impossible to organize them in a cen-
tralized architecture, grids in peer-to-peer architectures [1] attract a lot of atten-
tion from researchers. Peer-to-peer grids consist of numerous grid nodes, and the
submitted tasks are distributed to grid nodes without a centralized control or
scheduling mechanism. Thereby, two key issues of research on peer-to-peer grids
are (1) finding a computing mechanism suitable to situations with large-scaled
grid nodes and tasks and (2) examining the dynamics of peer-to-peer grids as
well as emergent global behaviors. This paper will address these issues.

1.1 Peer-to-Peer Computing Architecture

Peer-to-peer computing has quickly emerged as a new paradigm for developing
distributed, Web-based systems [4]. Peer-to-peer systems consist of distributed

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 173–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 X. Jin, J. Liu, and Z. Yang

and decentralized components, called nodes, which usually have the same roles,
responsibilities, and symmetric communications among them [5]. Such systems
are mainly designed to share files among distributed computers at the beginning
stage of peer-to-peer computing. In [4], Ge et al. designed a mathematical model
for characterizing the behavior of peer-to-peer file sharing systems. Currently,
researchers have begun to explore new applications of peer-to-peer computing.
Many large projects, such as JXTA [6], have been started during the past several
years. In addition, research on peer-to-peer grids [1] is also one of the important
branches of peer-to-peer computing.

1.2 Agent-Based Peer-to-Peer Systems

Agent-based systems have been widely used in peer-to-peer computing [5,7]. It is
regarded as a perfect match to integrate peer-to-peer computing and agent-based
systems [5,8], because “since their inception, multi-agent systems have always
been thought of as networks of peers” [8]. By observing the perfect match as well
as the potential benefits, Li et al. have developed an agent-based platform, called
A-peer, to facilitate the deployment of agents in a peer-to-peer environment [7].
In peer-to-peer grids, it is locally determined, according to some requirements, to
distribute tasks to grid nodes. This can be implemented by agents and their local
behaviors. Based on this observation, in this paper, we present an agent-based
peer-to-peer computing paradigm in grids.

1.3 Problem Statements

As we mentioned above, in peer-to-peer grids, continuously submitted tasks are
distributed to numerous grid nodes in a decentralized fashion. Facing such a
situation with large-scaled tasks and grid nodes and hence involving some un-
certainty, what we primarily concern are how to provide a scalable computing
mechanism for peer-to-peer grids and then how to examine their global dynamics
in depth. This paper will address these two issues. Specifically, the latter issue
can be investigated in two typical scenarios: (1) Given a short time interval dur-
ing which no new tasks are submitted and no old tasks are handled, can we
provide a macroscopic model to characterize the dynamics of task distribution?
(2) Given a long time interval during which some new tasks are submitted and
some old tasks are handled at each step, can we provide a model to characterize
the dynamics of task handling?

1.4 Organization of the Paper

The rest of the paper is organized as follows: In Section 2, we describe an agent-
based grid computing paradigm. In Sections 3 and 4, we present two macroscopic
models to characterize the dynamics of task distribution and handling in two
identified scenarios. Through case studies, we validate the effectiveness of our
models. We also show our observations and analyze the corresponding mech-
anisms. Section 5 concludes the paper and presents the directions for future
work.

The Dynamics of Peer-to-Peer Tasks: An Agent-Based Perspective 175

2 Agent-Based Computing Paradigm in Peer-to-Peer
Grids

In this section, we will provide an agent-based computing paradigm in peer-to-peer
grids. Our computing paradigm and following models are inspired by the differen-
tial equation based modeling work in [9,10].

In our paradigm, we employ agents to carry tasks. Then, the movements of
agents correspond to the transports of tasks among grid nodes. When a task is sub-
mitted to a grid, an agentwill be generated to carry it. Each agent carries a task and
wanders on the network of grid nodes to search for an idle node to form a new agent
team1, or an existing agent team to join and queue. Here, we define the period of
time that an agent spends on wandering before it joins an idle node or an existing
agent team as time delay. An agent prefers to join a short team rather than a long
team because of the possibly long waiting time. Specifically, in our models, we set a
maximum size for agent teams. Agents will not join teams with the maximum size.
Globally, how many wandering agents join teams of a certain size depends not only
on the number of currently wandering agents, but also on the numbers of currently
existing teams of various sizes. In this sense, our models are adaptive.

After having joined a team, an agent can also decide to leave the team and move
to other nodes because, as we have mentioned above, it prefers to queue at a short
team. Note that in the proposed paradigm, agents are assumed to be memoryless.
In other words, the experience of an agent will not affect its following behaviors.
According to the above description, an agent has three main behaviors:wandering,
queuing, and leaving. In order to have its task handled, an agent must be served by
one of the grid nodes. An agent only has local information about the sizes of teams,
where it is queuing or which it encounters while wandering. It does not have the
global knowledge of the whole grid. After an agent queues at the first place of a
team for a unit of service time, its task will be handled and then the agent itself will
disappear from the gird environment automatically.

It should be pointed out that this paper will focus on a peer-to-peer minigrid
environment the sameas in [11],where (1) gridnodes arehomogeneous, andprovide
the same services; and (2) tasks are divided into independent subtasks with the
same size before they are submitted to the grid. In addition, we assume that (1)
agents follow the same strategies of wandering, queuing, and leaving; and (2) time
delay and service time are positive constants.

3 The Dynamics of Task Distribution

This section will provide a macroscopic model to describe agent-based task dis-
tribution scenario, where the total number of tasks as well as the total number
of agents remain unchanged over time. This means, during the process of task
distribution, (1) no new tasks are submitted to the grid environment. Hence,
no new agents are generated; (2) no tasks are finished. Accordingly, no agents
disappear.
1 In the paper, we refer to the queuing agents at a grid node as an agent team.

176 X. Jin, J. Liu, and Z. Yang

3.1 Characterizing the Process of Task Distribution

Our following model will focus on characterizing the number of wandering agents
as well as the number of agent teams of different sizes. Let q0 be the number
of wandering agents, qs be the number of agent teams of size s, and m be
the maximum team size. Then, we should have qs ≥ 0 (0 ≤ s ≤ m). This is a
prerequisite of our model. According to the above description of task distribution
scenario, we have the following general model:

dq1(t)
dt

= j0q0(t) − j1q1(t) + l2q2(t) − l1q1(t),

dqs(t)
dt

= js−1qs−1(t) − jsqs(t) + ls+1qs+1(t) − lsqs(t) (1 < s < m), (1)

dqm(t)
dt

= jm−1qm−1(t) − lmqm(t),

dq0(t)
dt

=
m∑

s=1

lsqs(t) −
m−1∑
s=0

jsqs(t),

where coefficients js (0 ≤ s < m) and ls (0 < s ≤ m) are adaptive with the
real-time agent distribution. They are functions as follows:

0 ≤ js

(
q0(t), q0(t − τ); q1(t), · · · , qm−1(t)

)
≤ 1 and 0 ≤ ls

(
qs(t)

)
≤ 1. (2)

In (1), the first three equations characterize the quantitative changes of teams
of size 1, s (1 < s < m), and m, respectively; The last equation characterizes
the quantitative change of wandering agents. To better understand the equation
system, here we will give some more detailed descriptions. First, let us see the
second equation, which is a general one. In the second equation,

1. js−1qs−1(t) − jsqs(t) describes the quantitative change of teams of size s
caused by wandering agents’ joining at certain teams. Specifically, js−1qs−1
(t) denotes that there are js−1qs−1(t) teams of size s − 1, each of which has
an agent beginning to wander from time t − τ 2,3 joining at time t. Then,
these teams become teams of size s. Therefore, the number of teams of size
s will increase with js−1qs−1(t). jsqs(t) is similar.

2. ls+1qs+1(t) − lsqs(t) describes the quantitative change of teams of size s
caused by queuing agents’ leaving. Specifically, ls+1qs+1(t) denotes that at
time t, the last agents at ls+1qs+1(t) teams of size s + 1 leave. Accordingly,
these teams become teams of size s. The number of teams of size s will
increase with ls+1qs+1(t). lsqs(t) is similar.

The first equation is a special case, where j0q0(t) denotes that j0q0(t) wander-
ing agents from time t − τ meet idle nodes at time t and form new teams of
2 We refer to an agent beginning to wander from time t − τ as an wandering agent

from time t − τ .
3 Here, time t − τ is manifested in the coefficient function js−1(·).

The Dynamics of Peer-to-Peer Tasks: An Agent-Based Perspective 177

size one. Then, the number of teams of size one increases with j0q0(t). As com-
pared with the second equation, the third equation misses two terms, −jmqmt
and lm+1qm+1(t), because there are no teams of size m + 1 and no agents will
join teams of size m. The fourth equation describes the quantitative change of
wandering agents where,

∑m
s=1 lsqs(t) denotes the total number of agents that

leave teams of various sizes;
∑m−1

s=0 jsqs(t) denotes the total number of wander-
ing agents from time t − τ , which meet certain existing teams and join them to
queue at time t, or meet idle nodes and form new teams of size one at time t.

Now, let us explain the meanings of js(·) and ls(·) (0 ≤ s ≤ m) in detail:

1. js(q0(t), q0(t − τ); q1(t), · · · , qm−1(t)) denotes the rate of teams of size s,
which agents, beginning to wander at time t − τ , join at time t. The reason
why js(·) is related to q0(t) and q0(t−τ) as well as q1(t), · · · , qs(t), · · · , qm−1
(t) is that at time t, some wandering agents from time t − τ meet idle nodes
and form teams of size one, or join existing teams of various sizes. General
speaking, the more teams of size s, the more chances with which wandering
agents join them, thus the larger js. Therefore, rate jss should be determined
by the numbers of wandering agents at time t−τ and t, as well as the numbers
of various teams. Here, τ > 0 denotes time delay.

2. ls(qs(t)) denotes the rate of teams of size s, whose last agents leave at time
t. It only depends on the number of teams of size s at time t.

According to their specific meanings, js(·) and ls(·) (0 ≤ s ≤ m) are subject to
the following constraints:

1. Constraints about {js} (0 ≤ s ≤ m):

m−1∑
s=0

js · qs(t) ≤ q0(t) and
m−1∑
s=0

js · qs(t) ≤ q0(t − τ). (3)

The above two constraints denote that the number of wandering agents from
time t−τ , which form new teams of size one or join existing teams of various
sizes at time t, should be less than or equal to the total number of wandering
agents from time t − τ as well as the number of wandering agents at time t.

2. A constraint about js and ls (0 ≤ s ≤ m):

0 ≤ js · qs(t) + ls · qs(t) ≤ qs(t). (4)

where js ·qs(t) denotes the numbers of teams of size s, which have wandering
agents joining; ls ·qs(t) denotes the numbers of teams of size s, where the last
agents leave. The above constraint indicates there is only a part of teams of
size s, where either some wandering agents join or the last agents leave.

3.2 Case Studies

In this subsection, we will through case studies validate that our model is effective
in characterizing the process of task distribution. Meanwhile, we will examine
the dynamics of task distribution.

178 X. Jin, J. Liu, and Z. Yang

For the sake of illustration, this subsection will set m = 2. According to
the constraints on jss and lss discussed in the previous subsection, we can set
parameter functions j0(t), j1(t), l1(t), and l2(t) as follows:

j1(t) =

⎧⎨
⎩

0, if f(t, τ) = 0 or q1(t) = 0,
p1 · f(t, τ)/q1(t), if q1(t) > f(t, τ),

p2, otherwise,
(5)

j0(t) =
{

0, if f(t, τ) = 0,
p4 · (1 − j1(t)q1(t))/f(t, τ), otherwise, (6)

l1(t) = p3 · (1 − j1(t)), and l2(t) = p5. (7)

where f(t, τ) = min(q0(t − τ), q0(t)), pi (i = 1, · · · , 5) can be functions with a
range of [0, 1] or constants in [0, 1]. Without loss of generality, in the following
case studies, we set them as constants.

Non-negativeness and Global Stability. Since q0(t) and qs(t)(1 ≤ s ≤
m) denotes the number of wandering agents and the number of teams of size
s, respectively, they should be non-negative. Moreover, according to [12], the
process of load balancing will tend to a steady state finally. In the following, we
will through a case study show that our task distribution model possesses the
above two properties, namely,

1. Non-negativeness: q0(t), q1(t), and q2(t) remain non-negative as t > 0.
2. Global Stability: q0(t), q1(t), and q2(t) tend to unique steady states as t

increases.

Case Study 1. In this case study, we set S(0) = 1000, τ = 0, p1 = 0.1, p2 =
0.1, p3 = 0.1, p4 = 0.3, and p5 = 0.2. It contains five cases with different initial
agent distributions: Case 1: q0(0) = 1000, q1(0) = 0, and q2(0) = 0; Case 2:
q0(0) = 0, q1(0) = 1000, and q2(0) = 0; Case 3: q0(0) = 0, q1(0) = 0, and
q2(0) = 500; Case 4: q0(0) = 100, q1(0) = 100, and q2(0) = 400; Case 5:
q0(0) = 300, q1(0) = 300, and q2(0) = 200.

From the results shown in Figure 1, we can note that:

1. For all cases, their q0(t), q1(t), and q2(t) curves remain non-negative during
the process of task distribution. For each case, its q0(t), q1(t), and q2(t) curves
monotonously converge to steady states. All cases take around 30 time units
to converge to a unique steady state where q0(t) = 210, q1(t) = 580, and
q2(t) = 105. According to the setting of pi, we can note that averagely j0(t)
is greater than j1(t), l1(t), and l2(t). That means agents prefer to form teams
of size one, rather than wander or queue at teams of size two. This is the
reason why at the final steady state, there are relatively more agent teams
of size one.

The Dynamics of Peer-to-Peer Tasks: An Agent-Based Perspective 179

0 5 10 15 20 25 30 35 40
0

500

1000

q 0

0 5 10 15 20 25 30 35 40
0

500

1000

q 1

0 5 10 15 20 25 30 35 40
0

200

400

600

t

q 2

Case 1
Case 2
Case 3
Case 4
Case 5

Case 1
Case 2
Case 3
Case 4
Case 5

Case 1
Case 2
Case 3
Case 4
Case 5

210

580

105

Fig. 1. Case Study 1: Task distribution

2. Let us take Case 4 as an example to show the working mechanism of our
model. At the beginning, as compared with the numbers of wandering agents
and agent teams of size one, there are too many agents queuing at teams of
size two. Therefore, some queuing agents at those teams leave and become
wandering agents. At the same time, those teams become new teams of size
one. Here, we should note that while some queuing agents at teams of size
two leave, there are also some wandering agents that join existing teams of
size one and form new teams of size two. However, the number of the former
is relatively greater than that of the latter. This explains why q2(t) curve
decreases whereas q0(t) and q1(t) curves increase gradually.

Remark 1. Through the above and other case studies (not presented), we have
the following observations: (1) No matter what the initial agent distributions are,
the numbers of wandering agents and queuing agents at various teams always
keep non-negative during the process of task distribution, and finally converge
to unique steady states; (2) Given a setting of parameters p1, p2, p3, p4, and p5,
all different initial agent distributions always converge to a unique balanced and
steady state; (3) The final steady distribution depends on the setting of p1, p2,
p3, p4, and p5. Different settings lead to different final agent distributions; (4)
The number of steps taken to converge depends on the setting of p1, p2, p3, p4,
and p5.

Time Delay. In the following, we will examine the effects of time delay on the
process of task distribution.

Case Study 2. In this case study, we set S(0) = 1000, p1 = 0.1, p2 = 0.1,
p3 = 0.1, p4 = 0.3, p5 = 0.2, q0(0) = 100, q1(0) = 100, and q2(0) = 400.

180 X. Jin, J. Liu, and Z. Yang

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

q 0

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

q 1

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

t

q 2

τ=0
τ=20
τ=40
τ=80

τ=0
τ=20
τ=40
τ=80

τ=0
τ=20
τ=40
τ=80

210

580

105

Fig. 2. Case Study 2: Time delay

The results are shown in Figure 2. For the sake of space limitation, we will
not elaborate on the details of the figure.

Remark 2. In light of Case Study 2, we can observe the following phenomena:
(1) Even if taking into account time delay, the final agent distribution, i.e., the
final steady state of task distribution, does not change with different values of
time delay; (2) Time delay plays a linear role. In the case of considering time
delay, the time units that the process of task distribution takes to converge
are the summation of time delay and the time units needed in the case of not
considering time delay.

4 The Dynamics of Task Handling

In this section, we try to characterize the dynamics of task handling in the
task handling scenario, where (1) there are some new tasks submitted to the
grid environment at the beginning some steps. Accordingly, the same number of
agents are generated to the grid environment; (2) at each step, some old tasks,
which have queued at the first places of certain teams for a unit of service time,
are finished. Therefore, the corresponding agents disappear from the grid en-
vironment automatically. As compared with the task distribution scenario, the
task handling scenario is more general and more realistic. The task distribu-
tion scenario can be regarded as a relatively small locality of the task handling
scenario.

4.1 Characterizing the Process of Task Handling

Given the above description, we can extend our task distribution model to the
following new one:

The Dynamics of Peer-to-Peer Tasks: An Agent-Based Perspective 181

dq1(t)
dt

= j0q0(t) − j1q1(t) + l2q2(t) − l1q1(t) + f2q2(t) − f1q1(t),

dqs(t)
dt

= js−1qs−1(t) − jsqs(t) + ls+1qs+1(t) − lsqs(t) + fs+1qs+1(t) − fsqs(t),

dqm(t)
dt

= jm−1qm−1(t) − lmqm(t) − fmqm(t), (8)

dq0(t)
dt

=
m∑

s=1

lsqs(t) −
m−1∑
s=0

jsqs(t) +
{

g(t) t ≤ T
0 t > T

,

where,

1. fs+1qs+1(t)−fsqs(t), called “task handling” term, describes the quantitative
change of teams of size s, because some queuing agents at the first places
have been handled. Specifically, fs+1qs+1(t) denotes that fs+1qs+1(t) teams
of size s+1 at time t−λ become teams of size s, because the tasks carried by
their first agents are handled. Therefore, the number of teams of size s will
increase with number fs+1qs+1(t). Here, λ > 0, called service time, denotes
the time units to finish a task.

2. T ≥ 0, called time threshold, denotes the time point before which new tasks
are submitted to the grid and accordingly new agents are generated to carry
them.

3. g(t) denotes the number of new tasks submitted at time t < T .

Specifically, in (8), fs (1 ≤ s ≤ m) has the following form:

0 ≤ fs(qs(t), qs(t − λ)) ≤ 1, (9)

where denotes that the rate of agent teams of size s, which have a task finished,
is dependent on the numbers of agent teams of size s at time t − λ and t. In
other words, fs(·) is adaptive. According its meaning, fs (1 ≤ s ≤ m) has the
following constraints:

fs · qs(t − λ) < qs(t) and fs · qs(t) < qs(t − λ). (10)

4.2 Case Study

This section will through case studies validate the effectiveness of our model
in characterizing the process of task handling and study the dynamics of task
handling.

In this section, we will also set m = 2. To satisfy the constraints discussed
above, we can set parameter functions f1(t) and f2(t) as follows:

f1(t) =
{

p6 · h1(t, λ)/q1(t), if h1(t, λ) > 0,
0, if h1(t, λ) ≤ 0,

(11)

f2(t) =
{

p7 · h2(t, λ)/q2(t), if h2(t, λ) > 0,
0, if h2(t, λ) ≤ 0,

(12)

182 X. Jin, J. Liu, and Z. Yang

where h1(t, λ) = min(q1(t − λ), q1(t)), h2(t, λ) = min(q2(t − λ), q2(t)), p6 and
p7 can be functions with a range of [0, 1] or constants in [0, 1]. In our later case
studies, we set them as constants. Without loss of generality, we set g(t) = 300.

Case Study 3. This case study aims at examining the effectiveness of our task
handling model as well as the effect of time threshold T . The parameters are set
as follows: S(0) = 1000, τ = 0, λ = 30, p1 = 0.1, p2 = 0.1, p3 = 0.1, p4 = 0.3,
p5 = 0.2, p6 = 0.1, p7 = 0.2, q0(0) = 100, q1(0) = 100, and q2(0) = 400.

We can note from the results in Figure 3 that:

1. For all cases of time threshold T , their q0(t), q1(t), and q2(t) curves converge
to zero finally. That means all tasks are handled and corresponding agents
disappear at last. At the same time, all curves remain non-negative. These
are necessary conditions of the effectiveness of our characterization on task
handling.

2. In all cases of T , we can observe two stages on all curves: an increasing
stage and a decreasing stage. Due to T �= 0 and λ �= 0, that means at
the beginning T steps there are new tasks submitted, but no old tasks are
finished, therefore all curves increase at this stage. After T and λ exceed the
preconcerted values, because no new tasks are submitted and at the same
time some old tasks are handled, all curves begin to decrease and finally
converge to zero4.

3. For different T , q0(t), q1(t), and q2(t) curves reach their peaks at different
time. The larger the time threshold T , the later the time when the curves
reach their peaks.

Remark 3. From Case Study 3 and some other case studies (not presented), we
observe that: (1) All curves corresponding to the numbers of wandering agents
and various agent teams converge to zero eventually. That means all agents
automatically disappear finally as all tasks are handled. Meanwhile, all curves
keep non-negative. These two points are necessary conditions of the effectiveness
of our model; (2) Service time λ and parameters p6 and p7 mainly determine
the speed of task handling: the smaller the service time λ, the faster the speed
of task handling; the larger parameters p6 and p7, the faster the speed of task
handling. These are consistent with the (physical) meanings of λ, p6, and p7;
(3) Time threshold T only affects the total number of tasks handled. A larger
T indicates there are more tasks to be handled; (4) The effects of time delay in
the task handling model is the same as those in the task distribution model. It
only linearly prolongs the time to handle all tasks.

4 Note that all q2(t) curves have a minor decreasing stage during the first 4 steps. It is
caused by the following reason: at the beginning, as compared with the numbers of
wandering agents and agent teams of size one, there are relatively more agent teams
of size two, therefore some agents will leave these teams to wander and these teams
become teams of size one. This can also observed in Figure 1.

The Dynamics of Peer-to-Peer Tasks: An Agent-Based Perspective 183

0 10 20 30 40 50 100 150
0

1000

2000

3000

q 0

0 10 20 30 40 50 100 150
0

2000

4000

6000

8000

q 1

0 10 20 30 40 50 100 150
0

500

1000

1500

t

q 2

T=10
T=30
T=50

T=10
T=30
T=50

T=10
T=30
T=50

Fig. 3. Case Study 3: Task handling

5 Conclusions

Grid computing aims at sharing and integrating distributed computational re-
sources and data resources. In grid computing, peer-to-peer grids are of special
interest. In peer-to-peer grids, tasks are distributed to lots of grid nodes in a
decentralized fashion. Facing such a large-scaled task allocation problem, this
paper tried to provide a suitable computing mechanism and then examine the
global dynamics of peer-to-peer grids. Specifically, we first presented an agent-
based computing paradigm for peer-to-peer grids. We then provided two models
to characterize two typical scenarios in this paradigm, i.e., task distribution sce-
nario in short time intervals and task handling scenario in long time intervals.
Through case studies, we validated the effectiveness of our models under differ-
ent conditions, including initial agent distributions, time delay, etc. At the same
time, we observed some key features of the dynamics of task distribution and
handling.

Regarding the future work, we have the following two directions:

1. The paper addresses a special peer-to-peer grid computing scenario, where
all grid nodes provide the same services and all tasks need the same services.
In our future work, we need to relax the above restrictions on grid nodes
and tasks so as to extend our model to a more general scenario, where both
grid nodes and tasks can be heterogeneous.

2. In the paper, we analyzed our model through case studies. As the next step,
we will develop a real platform so as to experimentally simulate and then
validate our proposed computing paradigm as well as task distribution and
task handling models.

184 X. Jin, J. Liu, and Z. Yang

References

1. Berman, F., Fox, G., Hey, T., eds.: Grid computing: making the global infrastruc-
ture a reality. John Wiley and Sons (2003)

2. Foster, I.: Internet computing and the emerging grid. Nature Web Matters (2000)
http://www.nature.com/nature/webmatters/Grid/grid.html.

3. Foster, I., Kesselman, C., eds.: The Grid: Blueprint for a new computing infrastruc-
ture. Morgan Kaufman (1999)

4. Ge, Z., Figueiredo, D.R., Jaiswal, S., Kurose, J., Towsley, D.: Modeling peer-peer
file sharing systems. In: IEEE INFOCOM 2003 – The Conference on Computer
Communications. Volume 22. (2003) 2188–2198

5. Overeinder, B.J., Posthumus, E., Brazier, F.M.: Integrating peer-to-peer network-
ing and computing in the agentscape framework. In: Proceedings of ICP2PC’02,
Linkoping, Sweden (2002) 96–103

6. Gong, L.: JXTA: A network programming environment. IEEE Internet Computing
5 (2001) 88–95

7. Li, T.Y., Zhao, Z.G., You, S.Z.: A-peer: An agent platform integrating peer-to-peer
network. In: Proceedings of CCGRID’03, Tokyo, Japan (2003) 614–617

8. Moro, G., Ouksel, A.M., Sartori, C.: Agents and peer-to-peer computing: a promis-
ing combination of paradigms. In: Proceedings of the 1st International Workshop
on Agents and Peer-to-Peer Computing. Volume 2530., Springer (2003) 1–14

9. Lerman, K., Shehory, O.: Coalition formation for large-scale electronic markets.
In: Proceedings of ICMAS 2000. (2000) 167–174

10. Lerman, K., Galstyan, A., Martinoli, A., Ijspeert, A.J.: A macroscopic analytical
model of collaboration in distributed robotic systems. Artificial Life 7 (2001) 375–
393

11. Liu, J., Jin, X., Wang, Y.: Agent-based load balancing on homogeneous minigrids:
Macroscopic modeling and characterization. IEEE Transactions on Parallel and
Distributed Systems (in press) (2004)

12. Wang, Y., Liu, J., Jin, X.: Modeling agent-based load balancing with time delays.
In: Proceedings of IAT-2003, Halifax, Canada (2003) 189–195

Peer-to-Peer Computing in Distributed Hash
Table Models Using a Consistent Hashing

Extension for Access-Intensive Keys

Arnaud Dury

Centre de Recherche en Informatique de Montral,
550 rue Sherbrooke Ouest,

Montral, H3A 1B9, Qubec, Canada
Arnaud.Dury@crim.ca

Abstract. Classical distributed computing projects generally use a spe-
cialized client/server model. Recent approaches, such as BOINC, favor
instead the development of distributed computing platforms, relying on a
generic client/server model. We propose a fully decentralized computing
model, considering all participant as peers that can submit personalized
computing tasks to any number of other peers currently offering their
services, listed in a peer directory. Our model is built upon Chord, a
particular Distributed Hash Table. Chord allows load balancing of the
number of keys per node, but offers no way to balance the bandwidth
load of a frequently accessed key, such as a peer directory. Our model
extends Chord with load-balancing of those access-intensive keys. We
present a modelization of the bandwidth and storage costs of our model
and experimental performance results using a variable number of peers,
tasks, tasks time, and a variable ratio of contributors and solicitors roles
among peers.

1 Introduction

Distributed computing is a tool used in a growing number of research fields:
mathematics [1][2], biology [3], radio-signal analysis [4], protein folding [5], [6],
genome analysis [7], [8], meteorological previsions [9], crypto-analysis [10] and
others. These works are performed in a massively distributed manner, using
idle time from computers of generous contributors over Internet. But for their
popularity, the number of participants is still limited by the absence of tangible
rewards for the contributors, and the barriers of entry for any new project are
high. We present in this paper a Peer-to-Peer model for distributed computing
addressing these two issues, based on distributed directories over a Distributed
Hash Table (DHT). We propose a new solution for the handling of the ”hot
spots”1 such directories generate, and for which classical caching algorithms in
P2P systems are not applicable. We present a theoretical modelization of the
1 Hot spots are keys in a DHT so frequently accessed that they introduce network

congestion for the nodes responsible for them.

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 185–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

186 A. Dury

bandwidth and storage cost or our model, and we relate this modelization to
experimental results. The first part introduce our model, which extends the
consistent hashing used in Distributed Hash Table to balance the load of keys
that are both frequently read and frequently modified. We present a study of
performance of our model, by modelization and experiments, and we conclude
on the possible use and future extensions.

2 Network Efficient Nodes Discovery in a Distributed
Hash Table

The two main concepts of our model are the indexing of idle contributors nodes
and solicitors nodes in two distributed directories over a Distributed Hash Table
(DHT), and the use of the same DHT to store computed results as soon as they
are produced, if their originator is not connected. We developed a distributed
directory model, that offers load balancing of the bandwidth among the nodes,
and provides exhaustive answers to queries while preventing the flooding of the
network. We chose the DHT model (Chord, more precisely) over more classical
approaches such as Gnutella [11], Napster [12] or FreeNet [13], because DHT
models offer provable communication costs, provable stability under nodes join
and leave and support for both Read and Write operations. A distributed com-
puting system can have at times an excess of contributors, and at other times a
excess of solicitors. Our model uses two distributed directories, one for solicitors
and one for contributors. When a contributor node joins the network, it checks
for existing solicitors in the solicitors directory. If any are found, it will contact
one of them, chosen randomly, to collect units to process. If none are found, the
contributor will register itself to the contributor directory. The same principle
applies when a solicitor joins the network. In a DHT, an information is stored
under a key, on a certain node. The bandwidth of the node storing the directory
will quickly become saturated, because it will receive all the requests made by
all the nodes of the system. The load balancing present in Chord is a balancing
of the number of keys among the nodes, but not a balancing of the load access
to a particular popular key. While caching extensions to Peer-to-Peer systems
(such as [14]) have been proposed to solve this problem of ”hot spots”, or highly
accessed keys, they are not applicable to directories: in a period of high activ-
ity, nodes may enter and leave them frequently, and caching is inefficient in the
case of frequently modified data. We present an alternative and more efficient
method, based on an extension of consistent hashing.

3 Segmentation of an Access-Intensive Key over a
Consistent Set of Linked Nodes

Chord associate to each key Ki a hash code Hi using a function Hash(Ki) = Hi.
The node ωi responsible for Ki is the node whose identifier is the closest to
Hi when proceeding in a clockwise manner from Hi on the identifier ring.

Peer-to-Peer Computing in Distributed Hash Table Models 187

1

2

3 4

5

6 7

8

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 m

es
sa

ge
s

ge
ne

ra
te

d
pe

r
re

qu
es

t

Number of requests

"Message per request"

Fig. 1. Segments choice strategy (left) - Number of messages per request (right)

We propose in this paper to extend this hashing from Hash(Ki) = Hi to
Hash(Ki) = {Hj : Hj = φ(Hash(Ki), j), 1 ≤ j ≤ k}. We construct φ such
as φ(Hash(Ki), 1) = Hash(Ki), and in such a way that the values returned
by φ can be computed independently by any node of the system. The function
φ should not need any meta-information stored in the DHT, because the node
storing this meta-information would become the new saturated node. We use the
name ”segmented list” for the set of nodes {ω1, ω2, ..., ωk} that are responsible
for the hash code H1, H2, ..., Hk, the name ”segment” for each of these nodes
to differentiate them from others nodes of the system, and the name ”segment
population” to define the number of identifiers stored in a segment. Each of the
segments is linked to the next one, in a circular manner 1. A nodes directory is
thus a named, segmented list. The choice of the φ function embodies the strategy
for the key distribution. The strategy we choose tries to avoid the use of nodes
already responsible for the replication of another part of the same list by allo-
cating further segments of the list to segments currently as far as possible from
the existing ones (see 1). The function φ is thus only based on the key hash code
(defining the location of the first segment location on the ring) and the number of
segments (or ”hops”), and can be computed independently by any node. A node
willing to register randomly chooses a segment number from 1 to the estimated
bound of the number of segment. This random choice will make nodes spread the
load on the directory key over the sets of segments responsible for it. The bound
will be computed using the number of nodes per segment, which is a parameter
of the system, and the estimated total number of nodes in the system, which is
impossible to compute precisely, but for which we can obtain a good estimation.
In a Chord ring, each node maintains an index table of successors at successive
power of two from them. Each node ωi compute the angular density of nodes
on the ring, using data from its index table. Assume l is the number of entries
in the index table of ωi, idxi[l] is the last entry, and Θ(ωa, ωb) is the angle from
ωa to ωb on the ring. The angular density d is calculated as 2l

Θ(ωa,idxa[l]) . The

total number of nodes is then estimated by T = 360× d = 360×2l

Θ(ωa,idxa[l]) . We note
β the maximal segment population. The total number of segments is thus T

β . A

188 A. Dury

registration request to a directory of name Ki is sent to the node responsible for
the hash code φ(Hash(Ki), j) where j is chosen randomly in the [1, T

β] interval.
The node receiving this request will register the node if its local population is
under β, and will confirm to the subscribing node that its registration is done.
If the node has reached its maximal population, it will forward the request to
the next node in the chain, until a suitable one is found. Directory lookups fol-
low a similar method, while directory removal is a direct communication to the
corresponding segment.

4 Theoretical Modelization

We introduce a modelization of memory and bandwidth costs associated with
two models: the DHT storing the whole index in one node, and our model using a
segmented list that can be accessed at any segment. T is the number of nodes in
the system. Each node can act as a contributor or a solicitor whenever it wants. L
is the number of nodes that are solicitors (provider of works units) (L ≤ N). Δ is
the average time of computation for a work unit in seconds. U is the total number
of work units to compute. B is the maximal upload bandwidth consumed. S is
the size of request and reply packet. We assume S = 1500 bytes. β is the maximal
population of a segment. 1 ≤ β ≤ T . Assuming that U � T , we compute the
bounds of the memory and bandwidth imposed to the node storing the directory
for a classical DHT, during a period of d = 1 seconds. This node will store every
identifier of the system. We assume these identifiers consume m bytes each. The
memory consumed is thus M = T∗m

1024 Kb. The node responsible for the key will
also answer directory look-ups. We compute the upload bandwidth (bandwidth
used for replying to request) for this node: B = d ∗ T

Δ ∗S bytes per second. Such
a model can keep with at most : T = B∗Δ

d∗S nodes. Assuming a connexion with a
upload bandwidth limit of 512 kbit/s (optimistic upper limit of most broadband
ADSL lines), and assuming Δ = 60s on average, the maximal supported number
of nodes is slightly over 2600.

4.1 Linked List

Using a linked list of nodes, the first ones of which would be the one directly
responsible for the key, would be useless: the memory constraints for each node
would be lessened to M = T∗m

1024∗T
β

= m∗β
1024Kb, but the bandwidth load would stay

the same for the head of the list. The memory requirements for our directory
model are the same than in the linked list case. There is thus no theoretical
limit to the number of nodes that the system can accommodate, memory-wise,
because in an extreme situation each node may be responsible for as many or as
few identifiers as we choose.

4.2 Worst, Best and Average Cases

We study the new bandwidth requirements, under worst-case, best-case and
average-case situation. In the worst case scenario, new nodes willing to act as

Peer-to-Peer Computing in Distributed Hash Table Models 189

solicitors arrive constantly while all the contributors are occupied: no request
can be satisfied, and each one has to go through all the nodes of the list. But in
this case, each solicitor will only generate one request before subscribing itself
to the solicitors list, and entering a wait state. In most conditions, the arrival
of new solicitors can be assumed to be spread over time. So even in this worst
case, the system would probably stay efficient due to its use of a double direc-
tory structure, avoiding too many active polling for resources. In the best case
scenario, the system is in the following state: no segment of the list ever becomes
empty, due to a sufficiently large number of contributors. In this situation, each
contributor request is answered immediately by the first segment receiving it.
The bandwidth generated by the request is minimal, and the system can ex-
pand indefinitely. In the average case scenarion, the system stays between the
two previous extremes. A number of contributors register as idle each second,
and a number of solicitors send requests each second. We model the equilibrium
case, with an average equal number of registration and request per second. We
compute the total consumed bandwidth, in number of messages, to answer R
simultaneous requests from a segmented list containing R identifiers. We assume
that the R requests will be answered before any new contributor arrives. Let α be
the number of segments in the chain: α = T

β . A solicitor requesting a contributor
identifier send its request to any node of the segmented chain, and this message
is forwarded until an answer is found. The total number of messages produced
depends on the density of contributors identifiers available in the chain. We con-
sider a request reaching a randomized segment. To simplify the model we restrict
ourselves to the case where R ≤ β. For one identifier, the chance to be absent
from the first segment reached by the request is ψ1 = α−1

α . The chance to be
absent from the segment i of the list, knowing that the i − 1 previous segments
are empty is ψi = α−i

α−i+1 . The segment i is empty if all of the R identifiers are
absent. Using the assumption R ≤ β, there is no dependency between the loca-
tion of an identifier and the locations of the others. The probability Ψi(R) that
the first i segments are empty is thus: Ψi(R) = ψR

i = (α−i
α−i+1)R. We compute

now the chance to discover at least one identifier in the segment i after having
traversed the first i − 1 empty segments as : λi(R) = 1 − Ψi(R) = 1 − (α−i

α−i+1)R.
Now we can compute the average number of requests messages generated by one
request for a contributor identifier. The request have a probability λ1(R) to be
satisfied by the first segment asked, thus generating only one request message
(the initial request itself). If unsuccessful (with a probability 1 − λ1(R)), the
request then have a probability λ2(R) to be satisfied by the second segment,
thus generating two requests messages, the first request, and its retransmission
from the first segment asked to the segment one. The probability for the request
to be satisfied after s ≤ α steps is thus Satis(s) = λs(R) ×

∏s−1
δ=1(1 − λδ(R)).

We assume than the distribution of identifiers stays homogeneous after each re-
quest has been satisfied. This assumption implies that there is a redistribution
of the identifiers after each request is processed, which is not the case. We are
overestimating the homogeneous spread of identifiers. We compute thus M , a

190 A. Dury

lower bound of the average number of messages needed to answer one request,
while there are R identifiers left in the chain.

M(R) =
α∑

s=1

s × Satis(s) (1)

=
α∑

s=1

(
s × λs(R) ×

s−1∏
δ=1

(1 − λδ(R))

)
(2)

=
α∑

s=1

(
s × (1 − (

α − s

α − s + 1
)R) ×

s−1∏
δ=1

(
α − δ

α − δ + 1
)R

)
(3)

The total number of messages produced to answer R requests is thus
∑i=R

i=1
M(i). We show on the figure 1 the predicted average number of messages needed
to process one request, over a variable number R of requests for a list of R
identifiers present in the list of contributors of 10 segments, and a maximal
segment population of 20. This scenario is our equilibrium state scenario describe
previously. Our model predicts an interesting property: the higher the number
of requests received in an equilibrium state, the lower the average number of
messages needed to answer each one is, given a fixed number of segments and
a fixed segment population. We will show how the experimental results confirm
this modelization.

5 Experimental Results

We use a Network Simulator we built in Java, that allows us to parametrize the
connexion speed between each pair of machines. We coded our DHT model on
top of this simulator. All the computations at each node are simulated (time
taken and results size are parametrized). There is no packet loss, congestion
only lead to longer delay between machines. All nodes have the same computing
power, all units take the same time to be computed and all nodes have the same
bandwidth, that of a high-speed ADSL connexion. We show the experimental
results obtained with our model, using a variable population of nodes, units
and computation time and a variable mix of contributors versus solicitors. The
upper-left figure 2 shows the acceleration factor with a variable number of nodes,
from which only one acts also a solicitor, Δ = 3000 seconds and U = 3000. The
upper left figure 2 shows the acceleration factor with T = 300 nodes, U = 3000
units and a variable unit-time. These results show that the acceleration factor is
near the number of nodes when the unit computation time is high, which makes
sense as the P2P infrastructure introduces delays of its own, which have more
impact with short computation times tasks. Acceleration factor is higher then
the number of units is a multiple of the number of nodes2.

2 301 units computed with 300 nodes will take Δ more seconds than 300 units com-
puted on the same number of nodes.

Peer-to-Peer Computing in Distributed Hash Table Models 191

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

A
cc

el
er

at
io

n
fa

ct
or

Number of Nodes

Acceleration as a factor of the number of Nodes

"Acceleration"

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

A
cc

el
er

at
io

n
fa

ct
or

Unit Computation Time in seconds

Acceleration as a factor of Unit Computation Time

"Acceleration"

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

A
cc

el
er

at
io

n
fa

ct
or

Number of Units

Acceleration as a factor of the number of Units

"Acceleration"

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000 2500 3000

O
ve

rh
ea

d
pe

r
un

its
 in

 M
eg

ab
yt

es
 fo

r
30

0
ag

en
ts

Number of units

Overhead per unit with a variable number of units

"Overhead per unit"

Fig. 2. Acceleration factor. Overhead of the system over a variable number of units.

On the middle-right figure 2, we see that the simulation confirms our theo-
retical model: the higher the number of units, the lesser the communication cost
per unit is, keeping the number of nodes the same. The cost decreases as long
as there is more nodes than units, and then stabilizes, because solicitors stop
emiting new requests and start using their own directory.

6 Conclusion and Future Works

We introduced a new model for the efficient distribution of a directory model
over a DHT, providing bandwidth load-balancing for the frequently accessed
directories entries. A permanent connexion is not required to collect all the re-
turning results. While our current implementation runs on simulation, the real
implementation will use the Java Virtual Machine as its security and code mo-
bility layer. Modelization indicate that the bandwidth cost per computed units
is lowered when the number of units increases, which we verified in our imple-
mentation. We are now working on a real implementation of this model, offering
a generic API to allow anyone to interface their code with our P2P network.
We will implement research applications such as a distributed version of the
Spin model-checker (see [15]), and a distributed version of a genetic algorithm
library. A first possible improvement of our model is inter-segments communi-
cations. Each node will communicate with its two neighbors in two cases: node
switch from empty state to not-empty state, and node switch from full state to

192 A. Dury

not-full state. Propagation of information from node to node will allow them to
know the closest node with free space, or with an identifier of an idle contributor.
This allows quicker registration and request phases, at the cost of new commu-
nications messages between neighboring nodes. Another improvement will be to
take into account meta-data for each node, such as the computing power of the
node, in the request phase. This will allow each solicitor node to choose the
best available contributor, and to implement a distributed scheduling algorithm.
Pre-caching on the DHT of future units to distribute is also considered, when
upload bandwidth is available. The bandwidth bottleneck that occurs when too
many contributors return their results and ask for new units at the same time
will be alleviated.

References

1. Odlyzko, A.: Zeros of the riemann zeta function: Conjectures and computations.
In: Foundations of Computational Mathematics conference, Minnesota (2002)

2. http://mersenne.org (1996)
3. Loewe, L.: evolution@home: Experiences with work units that span more than 7

orders of magnitude in computational complexity. In: 2nd International Workshop
on Global and Peer-to-Peer Computing on Large Scale Distributed Systems, IEEE
Computer Society (2002) 425–431

4. University of California, B. (http://setiathome.berkeley.edu/)
5. Zagrovic, B., Snow, C.D., Shirts, M.R., Pande, V.S.: Simulation of folding of a small

alpha-helical protein in atomistic detail using worldwide distributed computing.
Journal of Molecular Biology (2002)

6. et al., V.P.: Atomistic protein folding simulations on the submillisecond timescale
using worldwide distributed computing. Biopolymers (2002)

7. SM, L., A, G., JR, D., VS, P.: Increased detection of structural templates using
alignments of designed sequences. In: Proteins: Structure, Function, and Genetics.
(2003) 390–396

8. Larson, S.M., Snow, C.D., Shirts, M., Pande, V.S.: Folding@home and
genome@home: Using distributed computing to tackle previously intractable prob-
lems in computational biology. In Grant, R., ed.: Computational Genomics, Hori-
zon Press (2002)

9. of Oxford, U., the Rutherford Appleton Lab, University, T.O. http://www.
climateprediction.net (2003)

10. (http://www.distributed.net/)
11. OpenSource. (http://www.gnutella.com)
12. (http://www.napster.com)
13. Clarke, I., Miller, S., Hong, T., Sandberg, O., Wiley, B.: Protecting free expression

online with freenet (2002)
14. Naor, M., Wieder, U.: Novel architecture for p2p applications: the continuous-

discrete approach. In ACM, ed.: SPAA, San Diego (2003)
15. Barnat, J., Brim, L., Stribrna, J.: Distributed ltl model-checking in spin. In:

Lecture Notes in Computer Science. (2001) 200–216

A Practical Peer-Performance-Aware DHT

Yan Tang, Zhengguo Hu, Yang Zhang, Lin Zhang, and Changquan Ai

School of Computer, Northwestern Polytechnical University, Xi’an, P.R. China
{tangyan, zhangy}@co-think.com
{zghu, geniuslinda}@sina.com

shrex acq@hotmail.com

Abstract. How to Build an efficient Distributed Hash Table (DHT) is
a fundamental issue in Peer-to-Peer research field. Previous solutions
ignore the heterogeneity of the large scale network. However, in prac-
tice, the fact is that the resource held by each peer in the Internet is
extremely diverse. And the the willing to share local resources of each
peer is also diverse. Therefore, the contribution for the system of a peer
should depend on the resources it holds or how many resources it want
to share, and should not be uniform. In this paper, we propose a Peer-
Performance-Aware Distributed Hash Table (PPADHT) which aims to
exploit the heterogeneity. It takes the performance difference of peers
into consideration to construct a dynamic variation of wrapped butterfly
to achieve the goal. We also show how to optimize the performance of
PPADHT in the view of hop counts by random graphs. Our simulation
results show that the average lookup hop counts of the PPADHT is ap-
proximately a log scale with constant out degrees. And it can achieve
loadbalance in two ways: both the document load and message routing
load, without introducing any additional load on the peer. Here, the load
balance means the load is proportion to the performance of peer.

1 Introduction

Distributed Hash Table (DHT) is now a widely studied Peer-to-Peer (P2P) in-
frastructure. It is outstanding because of the following advantages: it is purely
distributed, extensible,accurate, and balances load. Researchers now study the
DHT under the assumption that each peer joined the overlay network has same
performance (the CPU performance, storage, bandwidth and so on). This as-
sumption is convenient while studying traditional server clusters. But in the ap-
plication environment of a P2P infrastructure, the assumption is not feasible. As
reported in [1], extreme heterogeneity of peer performance exists. Ratnasamy[2]
proposed the open question: Can one redesign DHT routing algorithms to exploit
heterogeneity? With this in mind and more, we present a method to represent
the synthetic performance of the peers joining the P2P system in the overlay
construction process that may exhibit better properties than one can find when
building the overlay network without considering the real environment.

The remainder of this paper is organized as follows: Section 2 reviews the re-
lated work; section 3 presents the basic assumptions and motivation for our work;

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 193–200, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

194 Y. Tang et al.

section 4 shows the details of the PPADHT; section 5 presents the simulation
results; and section 6 summarizes the paper.

2 Related Work

Currently, all the DHTs are built based on the flat one-dimension space and
provide load balancing based on the assumption that the performance of peers
is equivalent. According to the report of Saroiu et al.[1], the bandwidth, latency
and availability of peers are diverse from three to five orders of magnitude. And it
is noticed by many researchers. The work of Kwon et al.[3] provides a hierarchical
way to capture the heterogeneity of the Internet. The work of Yingwu[4] bases on
virtual server, and utilizes collected proximity information to guide the migration
of virtual server. Recently, the work in [5] utilizes the heterogeneity of nodes to
modify the one-hop overlay [6]. They use level to present the bandwidth of the
nodes in the overlay and nodes at different level hold different size of routing
table and maintenance overhead. We utilize the heterogeneity in a different way.

3 Assumptions and Motivation

Previous works have the following basic assumptions:

Each peer in the P2P network has similar performance.
The documents are distributed in the overlay space randomly and evenly.
Any of the peers can freely connect with each other.

In practice, it is possible to make hundreds or even thousands of server peers
which have likely performance to be organized into an overlay. When the num-
ber of peers achieves a large scale like the Internet, the heterogeneity becomes a
natural feature. Our work bases on the following three basic assumptions:

The performance of each peer in the P2P network satisfies the power-law
distribution.

The documents distributed in the overlay space randomly and evenly.
The popularity of documents also satisfies the power-law distribution.
Any of the peers can freely connect with other peers.

Our goal is to exploit the heterogeneity in the large scale P2P infrastructure
and to try to build a more practical large scale DHT system by considering more
complex conditions that approach the reality of the current Internet’s behavior.
And the power-law distribution here, is truncated as the highest level hold all
the rest probabilities.

4 The Peer Performance Aware DHT

4.1 Overview

The basic idea of our Peer Performance Aware DHT (PPADHT) is to combine
a two-dimension space into the flat one-dimension overlay space. One of the

A Practical Peer-Performance-Aware DHT 195

two dimensions represents the performance of a peer; the other is generated by
Hash function. The fundamental topology utilized in the PPADHT is wrapped
butterfly network and the variant of it. We borrowed most mechanisms from the
chord project, including the successor list, and stabilization.

4.2 Overlay Space

The overlay space of PPADHT can be split into two parts. The high part is an
log(k) bits number represents the performance of a peer, and it is named as level
of a peer. The low part is a k bits number named as the row identifier of a peer.
It is generated by SHA1 algorithms. They are combined to be one k + log(k)
bits identifier. So the whole overlay space is [0, 2k+log(k) − 1]. Given any two
identifiers X and Y, The clockwise distance and real distance of them can be
calculated by these formulas:

d(X, Y) = (Y − X + 2k+log(k))%2k+log(k)

rd(X, Y) = min(d(X, Y), d(Y, X))

As in Chord, each peer and each document has a unique identifier. The iden-
tifier of a document is called key of that document. A peer holds the documents
that have the key between it and its immediate predecessor in the overlay space.
Unless for the last peer in the key space, it will hold the documents with key
from its immediate predecessor to 2k+log(k) − 1. It looks unfair for the last peer,
but we assume it have better performance, it should have enough capability to
do so. And this problem can be solved by the virtual server technology, we will
use it to balance the load between peers in the same level.

4.3 Routing Protocol

Routing Table. The routing table of a peer in the PPADHT contains the
edges that point to the butterfly edges of the peer, the immediate predecessor,
successor lists and an edge that point to the peer that has same row identifier
with it but at level ((l − 1) + k)%k named ancestor. As the performance of such
structure in the view of hop counts is not very good, we also add some random
edges in the out-degree which will be discussed in section 5.1.

Wrapped butterfly network is a variant of butterfly network. Let us write l for
the level of a peer, e0e1...ekfor the row identifier of a peer, and then a peer in a
wrapped butterfly network could be uniquely represented as< l, e0e1...ek >. Sup-
pose totally there are k levels (from level 0 to level k−1) in the wrapped butterfly
network, then each level has 2k peers. A peer < l, e0e1...ek > has two out degrees
pointing to peer < (l + 1)%k, e0e1...el...ek > and < (l + 1)%k, e0e1...el...ek >
respectively. The diameter of the wrapped butterfly network is

⌈3
2k

⌉
. Please refer

to [7] for the detailed proof.
We have three reasons to select the wrapped butterfly network as the fun-

damental structure. Firstly, it is a network born with two dimensions. It is easy

196 Y. Tang et al.

Fig. 1. A simple example of a lookup

0

200

400

600

800

1000

1200

0 20 40 60 80 100hop counts

oc
cu

re
nc

e

4 random edge within same level
4 random edge in whole overlay space
2 within same level +2 in whole overlay space
no random edge

Fig. 2. The effect of deferent kinds of ran-
dom edges on the hop counts

for us to use one of the dimensions to represent the performance of a peer. Sec-
ondly, it has low diameter. Thirdly, its degree is constant, which means it is
degree optimal.

Next Hop Decision. Two kinds of next hop decision can be applied. One comes
from the simple package routing algorithm [7] of wrapped butterfly network. The
other is the greedy algorithm, just to take the edge which is nearest to the target.
The former can achieve O(log(n)) hop counts which high probability, but k will
be a big constant, it is not really good in practice. The later can only achieve
O(n) hop counts, but with the random edges, it can achieve better result than
the former method. The reason we focus on the greedy algorithm is because it is
simple and robust. We will discuss it in the section 4.6. For a given key, find the
peer, which is the nearest one to the key in the routing table and forward the
message to it. The distance is the real distance of two peers. If the peer is the
current peer itself and it does not hold the key, the message will be forwarded
to the immediate successor. The process terminate till the message arrives to
a peer that is responsible for the key. Figure 1 shows a simple example of the
greedy lookup process (we do not present the random edges in this figure).

Peer Joining and Leaving. A new peer that wants to join the overlay must
know a peer that is already in the overlay. The bootstrap process is the same
as chord except the way to establish finger table. We just need to locate two
butterfly edges, an ancestor edge and several random edges. And the immediate
predecessor and successor of the new joined peer will notify the peers pointing
to them by butterfly edges and ancestor edges. The cost of join operation is just
linearly related with the hop counts of a lookup. We will show in our experiments
that the hop counts of a lookup are logarithmically increasing with the number
of peers and the worst case is well bounded. So the cost of join operation is also
logarithmically increasing, which means the overlay will have good scalability.

A peer leaving the overlay should transfer the documents it holds to its
successor and notify all the peers that pointing to it. The cost of peer leaving
can be ignored as it will not perform any lookups.

To Shorten the Hop Counts. The greedy routing algorithm can only achieve
O(n) hop counts for a lookup. Recall that random graphs always have low diam-
eter, we try to improve this by embed random graph into the overlay. We use the

A Practical Peer-Performance-Aware DHT 197

MT random generator [8] to randomly generate the identifiers and let the peer
establish edges pointing to those peers that are responsible for these identifiers.
And this method is shown to be very efficient in our simulation.

Three ways exist to add random edges for a peer. We can generate the random
identifiers in the whole overlay space, or generate it at the same level of the
peer, or add both kinds of random edges. To generate random identifier in the
whole overlay space means, the in-degree of peers will follow the power-law
distribution. As we assumed, peers distributed among levels follow the power-
law distribution. Then the overlay space hold by different peers also follows the
power-law distribution. And the random-edge of every peer will point to the key
randomly and evenly distributed in the overlay space. So the peers hold large
proportion of the overlay space will have more in-degrees. And we believe the
power-law distribution of in-degree edges is the reason why the method is so
efficient in this way.

4.4 Discussion

Level of a Peer. Let us write B for network bandwidth, T for the rate of uptime
and downtime of the peer stay in the network, C for CPU performance, M for
memory capacity, S for storage capacity, then level of a peer is a function L of B,
T, C, M and S, say, level = L (B, T, C, M, S). Here, B and T play an important
role for level because B is the main concern of the peers in the Internet, and
T presents the stability of the peer and it is based on the statistic of the past
behavior of the peer. We do not want those peers with high bandwidth but join
and leave the overlay frequently to be placed at high level as the cost of leave
and join operation for a high level peer is very high. Here we ignore the influence
made by C, M and S to make the above formula easier, level = L (B, T). The
influence of the performance of a peer can only be evaluated with a large scale
test-bed. We are planning for a new global wide application with our PPADHT
to perform further analysis on the level selection of a peer.

Load Balance. We discuss the load balance of the PPADHT in two aspects:
document number hold by each peer and the message transfer load of each peer.
The basic assumption of our discussion is peers distributed among levels satisfy
the power law distributionp(x) = (x+α)−β . We plus a constant α on x to avoid
level 0 hold all of the probability.

We assume that there are N documents randomly and evenly distributed
among all the peers. Peers present at level i would be within np(i)+np(i)(1−p(i))
with high probability and np(i) on average case. The document distributed at
each level is within N(2k−1)

k2 with high probability and N/k on average. Then
peers in level i will responsible for at most N

n
2k−1

k2 (i+α)2β documents with high

probability and N
n

(i+α)β

k on average. Where n, N ,α, β and k are the same for all
peers. Such that the document hold by each peer at different level will just have
relationship with the level of it. And we also calculate the level according to the
peer performance. So we can achieve document distribution load balance in the
view that high capacity peer contributes more for the network. And if users do

198 Y. Tang et al.

not want to contribute so much, they can adjust the load by adjusting the level.
We can see obviously from the formulas that the document load is exponentially
increasing as the level increasing.

To discuss the load balance for message transfer, we assume that to lookup a
document is behaved in a random and even distribution way. As the probability
for a peer to present at high level is fewer and fewer, higher level peers will have
more in bound linkages. The chance to take a high level peer as a hop is larger.
At the same time, higher level peers hold more documents, so the chance to
access them is larger. As we assumed, the popularity of documents also satisfies
the power law distribution. Things got to be change. It can not be solved by the
structure itself. We will solve it by the replication protocol in the future work.

5 Evaluation

We build a simulator using Java language to evaluate the protocols of PPADHT.
The experiments were done on a blade2000 workstation with 2G memory and
dual ultrasparcIII 1.2G CPU. In our experiment, we construct the wrapped
butterfly network with totally 256 levels, and the peers generated in different
levels satisfy the power law distributionp(x) = (x + α)−β with parameter β =
2.07 and α = 5. We do not use the successor list and stabilization mechanism
described in Chord, as we think they will have great influence on the property
of the overlay, especially with small number of nodes.

5.1 Hop Counts

As we have discussed, only the last hop counts of the greedy algorithm can not
be well bounded while the lookup get to a peer that is at the same level of
the target identifier. So the way to generate the random identifier at the same
level of a peer can make the lookup well bounded. But the first method will
achieve really low diameter in the whole overlay. To make a tradeoff, add both
edge should be good. The hop counts without random edge is similar to have
random edges at the same level, but the worst case is worse than it. The Figure
2 shows it. If without butterfly edges, the greedy lookup will cause many loops
in the overlay and messages can not be routed to the target correctly, so we
do not show the experiment result of it. Figure 3 shows the average hop counts
increasing as the number of peer increasing. The parameter for experiment is 4
random edges on same level and 4 random edges in whole overlay space, 210 to
215 peers, and perform 10000 random lookup. It increases linearly, so we can say
that the average hop counts increases logarithmically.

5.2 Load Distribution

Document Distribution. We did our experiment on document distribution
under this configuration to show that our PPADHT has the ability balance the
load of document distribution among levels. The parameter for the experiment

A Practical Peer-Performance-Aware DHT 199

0

2

4

6

8

10

12

14

16

0 5 10 15 20peer number (log scale)

A
ve

ra
ge

 h
op

 c
ou

nt
s

Fig. 3. Average hop counts as a func-
tion of logarithmic of peer number

Fig. 4. Peers distributed among levels
VS. average count of documents hold by
peers at different level

1

10

100

1000

10000

100000

0 50 100 150 200 250
level

co
un

t

Peers distributed among levels
Average route load distributed among levels

Fig. 5. Peer distributed among levels VS.
average random lookup route load of
peers at different level

1

10

100

1000

10000

0 50 100 150 200 250level

co
un

t

Peers distributed among levels
Average route load distributed among levels

Fig. 6. Peer distributed among levels VS.
average power-law lookup load of peers at
different level

is 5000 peers, 100000 documents randomly distributed. Figure 4 shows relation
of distribution of peers among different levels and the average document load of
peers in different level. From it, we can see that the count of document hold by a
peer increases as the level increases, which means it can match the distribution
of the peers distributed in different levels. Obviously the load of higher level
peers differs a lot, this is caused by some levels do not have any peers, so all the
load of those levels was put on the immediate succeed peer.

Message Routing Cost. To show the distribution of the load for message
transfer, we did an experiment under this configuration: 10000 peers, 100000
documents, 200000 random lookups. Figure 5 shows the distribution of the load
to route message. Also we can have the result that as the level of peer increases, it
contributes more for the overlay.Figure 6 shows the relation of peer distribution
among different levels and average route load of peer at different levels while the
popularity of documents satisfies the power law distribution. It is clearly that
some peers at lower level hold too much routing loads. We are scheduling to
solve this problem by replication algorithms.

6 Conclusion and Future Work

In this paper, we present the PPADHT. It utilizes the wrapped butterfly struc-
ture to construct an overlay network, and takes the extremely performance di-

200 Y. Tang et al.

versity of Internet hosts into consideration, so as to provide load balance in the
practice view which means higher performance peer should contribute more for
the system. Simulation shows our approach can balance the load from two as-
pects, the data distribution and the message transfer. The idea to consider the
distinguished peer performance while constructing overlay network should be
feasible to improve the load balance and other properties of the DHT systems.
We will continue to working on it. Simulation results also shows that the hop
counts for message route in PPADHT can achieve logarithmically increase as
peer number increases.

However, there are limitations of this approach. We have noticed that when
the document popularity satisfies the power-law distribution, the message route
load do not achieve a good state as some peers at lower level hold too much
loads, much of the higher level peers does not contribute enough as they are
assume to do. In the future, we schedule to solve this problem by working on
the replication algorithms.

References

1. Saroiu, S., G.K., Gribble, S.: A measurement study of peer-to-peer file sharing
systems. In: Proceedings of Multimedia Conferencing and Networking. (2002) 156–
170

2. Ratnasamy, S., Shenker, S., Stoica, I.: Routing algorithms for dhts: Some open
questions. (In: Proceedings of 1st International Workshop on Peer-to-Peer Systems)

3. Gisik Kwon, K.D.R.: An efficient peer-to-peer file sharing exploiting hierarchy and
asymmetry. (In: proceedings of SAINT 2003)

4. Yingwu Zhu, Yiming Hu, E.: Proximity-aware load balancing for structured p2p
systems. In: Proceedings of P2P’03. (2003)

5. Jingfeng Hu, Ming Li, N.N.W.Z.: Smartboa: Constructing p2p overlay network
in the heterogeneous internet using irregular routing tables. (In: proceedings of
iptps’04)

6. Anjali Gupta, Barbara Liskov, R.R.: One hop lookups for peer-to-peer overlays.
(In: proceedings of HOTOS IX)

7. David S.L. Wei, F.P.M.I., Naik, K.: Isomorphism of degree four cayley graph
and wrapped butterfly and their optimal permutation routing algorithm. (IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS)

8. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudorandom number generator. ACM Trans. on Modeling and
Computer Simulation 8 (1998) 3–30

Peer-to-Peer Data Lookup for Multi-agent Systems

Michael Thomas and William Regli

Department of Computer Science, College of Engineering,
Drexel University, Philadelphia, PA 19104-2875

{mst34, regli}@drexel.edu

Abstract. Systems such as Napster and Gnutella demonstrated the potential of
peer-to-peer data sharing. Similar schemes have been used to provide solutions
that ensure information availability, survivability and reliability. Current tech-
niques based on Distributed Hash Tables (DHTs) promise scalable solutions for
efficient lookup when data is distributed across large networks.

This paper considers how to adapt DHTs for use with multi-agent systems,
with a goal of supporting distributed data storage and lookup on resource-
constrained devices operating on dynamic networks. In existing DHTs, the net-
work and the data are assumed to be static. In our context, sets of mobile agents
manage the data.

We present a multi-agent approach for building CAN-based DHTs. DHT ac-
cess is provided through a DHT Agent Service. An extension of the standard CAN
lookup algorithm is presented which allows more efficient index maintenance for
highly mobile agents. Empirical results verify that the agent-based CAN achieves
the expected scalability.

1 Introduction

Mobile, intelligent agents have become a widely accepted method of developing distrib-
uted applications, due to both the flexibility of the agent-based programming paradigm
and the robustness provided by mobile agent architectures. This is particularly impor-
tant in dynamic, resource-constrained environments, such as that posed by a group of
soldiers carrying PDAs on an ad hoc network. In such an environment, an agent-based
system can adapt to the loss of a network node by changing the migration paths of
agents around that node to remaing network nodes.

The simplest agent-based systems include individual, independent agents; however,
the capabilities of single, independent agents operating in isolation can only go so far.
Multi-agent systems, however, require mechanisms for the various agents to commu-
nicate and share data and knowledge. This might take the form of shared workspaces,
blackboards, service discovery, or data exchange/lookup mechanisms between agents.
For example, if an agent requires a certain piece of data to perform its task, it can search
or broadcast to the network to find out if some other agent in the system has acquired
that data and can provide it to the searching agent. This can become problematic and
inefficient in large systems and in complex, dynamic network domains. Simple broad-
cast or flooding approaches, while suitable to small systems or reliable/static networks,
have been shown to break down when computing and network resources are scare and
networks are highly dynamic.

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 201–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

202 M. Thomas and W. Regli

Peer-to-peer systems, such as those used for Internet file sharing (e.g. Napster or
Gnutella) appear to offer a solution to these problems as they allow queries over large
networks. However, these solutions have problems of central points of failure [1] or par-
tial lookup [2]. Improvements to these approaches addressing these problems include
several types of Distributed Hash Table (DHT) algorithms, including Chord [3] and
Content Addressable Network (CAN) [4]. Currently, researchers are in active pursuit of
ways to adapt these methods to mobile, ad hoc networks and other dynamic domains.

This paper shows how to develop a CAN for a mobile-agent system. We present a
theoretical formulation that takes into account the potential for mobility of agents that
manage data storage and data indices. This approach has been validated using the Ex-
tensible Mobile Agent Architecture (EMAA) from Lockheed Martin Advanced Tech-
nology Laboratories.[5] The paper presents empirical results showing how agents in
an EMAA network can use an agent-based CAN to achieve the level of scalable data
lookup needed for large-scale multi-agent systems applications. We present a study of
the performance of the CAN on a simulated network and show that performance of the
CAN implementation in the mobile agent context is in line with known performance in
fixed networks. In this way, CANs can be adapted to agent systems with a performance
compromise. The paper concludes by discussing a few related complex problems posed
by data and index mobility in the CAN, as well as the effects of dynamic, ad hoc net-
works.

2 Agent-Based Data Lookup Problem

A mobile, intelligent agent operating alone is an effective tool, but a group of intelligent
agents working together is potentially capable of far more, able to exploit the strengths
of individual agents and network resources to accomplish their collective tasks more
quickly and efficiently. In order to collaborate, agents need access to several capabili-
ties. One of these capabilitiesis efficient data exchange and lookup.

For two agents to work together on the same task it is often necessary for one agent
to tell another about the results of one subtask before another subtask can be under-
taken. Various blackboard or whiteboard systems have been created to facilitate this
type of collaboration, but this approach yields only a local data lookup system, forcing
agents to migrate to a particular location to perform this data exchange. Besides the
obvious inefficiencies of such a mechanism, the centralized nature of the whiteboard is
undesirable in the face of unreliable networks.

We are interested not only in enabling two agents to collaborate, but in allowing
an entire system of agents to collaborate. We can define this agent system as the set of
agents A = {a1, a2, a3, . . .}, the set of network nodes N = {n1, n2, n3, . . .}, and the
set of data segments they wish to share D = {d1, d2, d3, . . .}. At any given time t, each
datum d ∈ D and agent a ∈ A are located at some network node n ∈ N . In order
to maintain efficient lookup, this system must store a mapping from data and agent to
index, I.

It is also important to consider the topology of the network being used. This topol-
ogy as it exists at any time t is described as the set of nodes in the network, N and the
set of direct connections or links, L ⊆ N ×N . In dynamic networks, an environment in

Peer-to-Peer Data Lookup for Multi-agent Systems 203

which agents are often applied, the sets L and N change over time, as network nodes and
connections are dropped. The entire agent system using a data-lookup service can now
be described as the 5-tuple {A, N, L, D, I}. The index I that allows agents migrating
between network nodes to locate data available on remote network nodes must be main-
tained in the face of these dynamic networks. Additionally, individual network nodes
are often resource constrained, particularly in mobile environments where storage and
processing power are at a premium. The structure and maintenance of this index is the
focus of this work.

3 Background

3.1 Intelligent Agents

Intelligent agents, self-contained software entities able to utilize resources available on
a network to perform particular tasks, have become a popular mechanism for collabo-
ration between heterogeneous systems. In particular, mobile, intelligent agents are ca-
pable of traveling between systems to perform various parts of their task and to interact
with existing systems. Such an agent operates by utilizing an agent framework to exe-
cute on one machine then transfer itself to another machine elsewhere on the network.
It is then able to utilize whatever resources and services exist on the new machine.

These services available to the intelligent agents are essential to allowing the agent
to perform its task. A service might allow access to a local database or to perform a
certain type of complex calculation. Additionally, some services allow agents to coor-
dinate with one another and collaborate to accomplish tasks, such as the whiteboard and
other data lookup services mentioned previously.

One of the key advantages to the use of mobility in agents is the ability to transport
data and services to the computing resources at which they are required. This advantage,
however, is a difficulty to any data-indexing approach, due to the dynamic nature of the
data and services being indexed. This dynamic nature must be taken into consideration
in the construction of a data-lookup mechanism for an agent-based system.

Past intelligent agent applications include many data-retrieval and legacy-system
integration applications. This technique has been particularly useful in providing data-
retrieval to and from heterogeneous legacy systems. These types of systems commonly
operate on low-bandwidth networks and with resource-constrained computing resour-
ces. As such, agents’ ability to exploit available resources on a network are key to
adequately performing the required tasks in these environments.[6]

Several different agent frameworks have been developed that could be used for
such an application. These frameworks include the Extensible Mobile Agent Archi-
tecture (EMAA), the Cognitive Agent Architecture (Cougaar)[7], the CoABS Grid [8],
Reusable Environment for Task Structured Intelligent Network Agents (RETSINA)[9],
the Distributed Environment Centered Agent Framework (DECAF)[10], Aglets Work-
bench [11], the Decentralised Information Ecosystem Technologies Agents Platform
(DIET)[12], as well as others. Each of these platforms has different strengths and weak-
nesses and are therefore better suited to different applications. However, these various
frameworks exemplify the various capabilities of agents in general.

204 M. Thomas and W. Regli

3.2 Distributed Hash Tables

File sharing networks such as Gnutella and Napster address much the same lookup
problem faced by agents. Instead of files to exchange, however, agents are interested in
the location of results, services, or other agents. Exactly what is being sought, however,
is largely irrelevant, as the lookup itself is the difficult task.

Gnutella and Napster, however, do not provide the final solution to the data lookup
problem. While they answer the question of decentralization, they are not massively
scalable, and in fact, must trade off accuracy for efficiency. Several different approaches
have been taken to create a fully scalable, decentralized data lookup system. Since such
a lookup system essentially provides a Hashtable-like interface distributed over a net-
work, such a system has been termed a Distributed Hashtable or DHT. Recent DHT
approaches include Chord and Content Addressable Networks (CAN), which each have
their own benefits and drawbacks.

3.3 Content Addressable Networks

This research focuses on Content Addressable Networks for their simplicity and effi-
ciency. In a CAN, the Hashtable’s key space is divided into a n-dimensional, toroidal
surface. This surface is then divided into Zones, and each network node is responsible
for one or more of these Zones. When data is placed into the CAN, a hash key is gen-
erated for each dimension, and this n-dimensional key defines its location within the
CAN. To find the data later, the hash key can be regenerated, and the appropriate Zone
can be queried to retrieve the data.

To facilitate routing of queries between network nodes, each Zone must know about
neighbors in each dimension. Therefore, each zone knows of at least one neighbor in
the positive direction and one in the negative direction on each dimension. Because
the space does not always divide evenly, it is possible for one zone to have multiple
neighbor zones in a given dimension. In this case, all of those neighbors are tracked.

When a query is made at a network node for data at a particular location, this query
can simply be forwarded to the local Zone’s neighbor that is nearest to the data. Each
neighbor zone’s coordinate range is examined, and the zone with the minimum distance
from any point within its range to the query location is considered the nearest zone.
The nearest neighbor Zone can then continue forwarding the request until it reaches
the correct location and the data is found and forwarded to the querying node. This
progression is shown in Figure 1.

In order to handle dynamic networks, a CAN must be able to handle events such
as node arrival and node departure, either announced or accidental. When a new node
arrives to join the CAN, an existing Zone can simply be split into two new Zones.
This is achieved by transferring responsibility for half the data to the new Zone as
well as reassigning neighbors for the new and old Zones, as they will have changed.
When a node departs, another node within the network must take responsibility for the
departing node’s Zone. This is how a node can become responsible for multiple Zones.
If the departing node made an unannounced disconnection, any data stored only on that
node’s zones may be lost, but this risk can be mitigated by redundant storage of data at
multiple locations.

Peer-to-Peer Data Lookup for Multi-agent Systems 205

Fig. 1. A lookup message travels between neighboring zones until it reaches the zone containing
the requested data

Redundant data storage is just one of many robustness and efficiency improvement
techniques that can be used with CANs. It is also possible to account for temporary
disconnections by allowing Zones to forward data queries through multiple neighbors,
minimizing the risk that the query will not reach its target, at a bandwidth cost. To
improve efficiency, it is possible to intelligently decide which Zone should be split to
accommodate a new node based on its network latency to the neighbors it would inherit.
Approaches such as these are mainly for future work but the potential advantages are
worth noting.

4 A Mobile-Agent-Based CAN

4.1 Requirements

To allow the use of a CAN in a multi-agent system, it must be accessible to agents
and servers in the system from the location of any agent in the system. Each node in the
agent system must maintain a portion of the CAN index, contained in one or more CAN
Zones. Each node must provide a CAN service to allow agents access to the CAN. These
local services will need to communicate with each other to maintain the overall index as
well as pass along data lookups. Since these services exist within the agent framework,
they should ideally exhibit the same robustness and flexibility provided by the overall
agent framework, including stability in the face of changing network configurations and
network node failures.

4.2 Problem Formulation

An agent-based CAN implementation is much like any other CAN implementation. The
CAN is made accessible to agents by publishing it as a data-lookup service. Interfaces
are created to allow agents to publish as well as retrieve data through the CAN service.

Any CAN implementation requires messages to be passed between nodes in the
CAN. These messages perform lookups, data registration, as well as CAN-maintenance
functions, including addition of nodes to the network and zone takeover. In an agent-
based CAN, instead of sending messages, communication can potentially take place by
dispatching lightweight agents between nodes in the network, though this is not strictly

206 M. Thomas and W. Regli

necessary. This allows additional robustness in the network through such mechanisms
as allowing an agent to select an alternate route due to node or network failures. Addi-
tionally, this allows a single lightweight agent to follow the entire path of a lookup as
well as perform the final retrieval of the desired data.

Our approach consists of three components. The first of these is the DHT Server, the
agent service through which agents, A, in the system interact with the CAN. One DHT
Server exists on each network node, n. Each DHT Server is responsible for maintenance
of one or more Zones, which are the second component of the system. A Zone z is
responsible for one d-dimensional region within the DHT and maintains the locations
of the data {Dz ⊆ D}. The set of these zones is then responsible for maintaining the
index I. The third component is made up of the messaging agents that maintain the DHT
and communicate data lookups and registrations between DHT Servers.

In theory, CANs are a highly scalable, efficient data lookup mechanism. Data does
not have to be duplicated across multiple nodes in order to guarantee successful lookup.
Additionally, data lookup latency is highly efficient (O(d | N |1/d)), where n is the
number of nodes in the network and d is the dimension of the network. For applica-
tions where large numbers of nodes are expected, a large d can be selected in order to
increase the scalability of the system at a slight per-node space cost (linear with respect
to number of dimensions) to maintain a more complex network.

5 Implementation

5.1 The Extensible Mobile Agent Architecture (EMAA)

As noted earlier, an intelligent, mobile agent requires an agent framework, or run-time
environment, in which to operate. For this research, the Java-based Extensible Mobile
Agent Architecture (EMAA) was chosen. EMAA operates by providing a Dock, which
executes mobile agents on a local machine and provides the mechanisms by which
agents can migrate to remote Docks as well as interact with locally provided services.

EMAA also provides the Distributed Event Messaging System (DEMS), which al-
lows EMAA servers and agents to perform lightweight communication across multiple
Docks using messaging agents.[13] DEMS is built to resemble Java’s built-in event sys-
tem. Servers and agents throw DEMS events like they would any other Java events, and
the built-in EMAA distribution mechanisms deliver the events to any agent or server
which has registered to receive that type of event. The main advantage of using DEMS
as our message passing service is the robustness provided by its agent-based delivery.

5.2 EMAA Distributed Hashtable Server

For this research, we implemented an EMAA DHT Server wthat resides on each net-
work node. EMAA agents and servers communicate with the CAN through this DHT
Server, which provides the same functionality of a standard Hashtable, specifically that
of storing data and looking up data. Since this interface is an EMAA Server, any agent
or server is able to interact with it as they would any local service such as a local white-
board, oblivious to the fact that data may be stored or found remotely.

This DHT Server contains at its heart a Java-based CAN. First, a CanNode class
was created which implements the basic functions required to manage the interactions

Peer-to-Peer Data Lookup for Multi-agent Systems 207

Fig. 2. The agent-based CAN is formed using DEMSCANNode, CANNode, and Zone objects on
each network node

of nodes within a CAN, such as the joining of new nodes to the network. This class
initially makes the assumption that it can make direct function calls to other CanNodes,
as if they are executing locally. This assumption is alleviated by the extensions in the
DemsCanNode, where these direct function calls are replaced by events sent through
DEMS lightweight messaging agents. Each CanNode contains a Zone (or Zones), which
is responsible for the portion of the index stored at that node and the IDs of neighbor
zones. This structure can be seen in Figure 2.

5.3 Indirect DHT Lookup

A DHT designed to work with mobile agents must take into account that data indexed
by the DHT is often carried from node to node by the mobile agents. If a standard DHT
is used directly, each time an agent migrates to a different node, the DHT’s index for
each piece of data carried by the agent must be updated. If an agent is highly mobile,
this can become an extremely large amount of data registration message traffic. One
approach that could help this somewhat would be the use of the CAN structure itself to
facilitate multicasting, but while this would reduce the number of messages exchanged,
each node in the system would still need to hear about each agent migration. [14]

In order to alleviate this problem, an Indirect DHT Server was created. This server
incorporates two separate DHTs spread across the entire network. The first maps a
data’s key to an agent ID. The second maps the agent ID to an agent’s current location.
This requires two lookups to be performed each time data must be found. However,
instead of needing to update each datum held by the agent’s index in the DHT, only
one entry in the agent to location mapping must be updated when the agent migrates.
Because of the additional lookup time required, this Indirect DHT is only appropriate
for use in systems of highly-mobile, data-heavy agents.

6 An Agent-Based DHT Server Testbed

6.1 Experimental Testbed

In order to test the agent-based CAN, we needed to set up a group of EMAA Docks
in which our agents could migrate. For our tests up to 50 EMAA Docks were started

208 M. Thomas and W. Regli

on a single machine. Each Dock operated within its own Java Virtual Machine and
communicated with other Docks as though each was on its own machine only connected
by the network. Test Agents were created which were tasked only with registering and
requesting data on fixed schedules.

6.2 Evaluation Metrics

As with most network-related services, the most important aspects of a CAN imple-
mentation are latency and bandwidth. In this case, we measure latency as the average
number of hops a query must take to reach the data sought. As the current implemen-
tation of the CAN does not take into account the time latency between nodes on the
network, we do not consider differences in time between node links.

Bandwidth in this case is measured as the total number of messages exchanged. This
must account for both the lookup messages and any network maintenance messages
created in the system, such as for adding and removing nodes from the system.

6.3 Experimental Results

Node Scalability. One of the most important factors in the usefulness of a DHT is its
scalability. As such, it was important to verify that the EMAA CAN server exhibited
the expected behavior of a CAN-style DHT. Specifically, the expected average lookup
time should be O(d | N |1/d) where d is the dimension of the CAN and N is the set of
nodes participating in the CAN.

Since this research explores an implementation of a CAN within a set of separate
EMAA docks rather than a simulation, this limited the number of nodes that could be
deployed to participate in the CAN. Therefore, CANs were set up consisting of 5-50
nodes in both a 2-dimensional and 3-dimensional network.

In each condition, an agent is deployed which places 1000 random items into the
DHT and then migrates to 1000 random locations and performs a lookup to retrieve one
of the previously placed items.

During this process, the number of messages to look up data were recorded for each
condition. It was expected that this value would follow the expected lookup-length trend
of O(d | N |1/d) for a CAN-style DHT. Additionally, the total number of messages sent
was recorded for each condition. This includes all network setup messages as well as
the data registration and lookup messages exchanged.

In both the 2-dimensional and 3-dimensional experiments, it was found that the
actual number of lookups approximately follows the expected number of lookups of
O(d | N |1/d). There is some variance seen, however. This is believed to be due to the
uneven sizes of Zones within the d-dimensional space necessary to completely cover
the space as well as the random nature of the keys selected for registration to the CAN.

Additionally, as expected, larger dimensional networks require a larger number of
total messages for smaller networks due to their larger setup overhead. Conversely,
smaller dimensional networks require a larger number of total messages for larger net-
works due to their less efficient lookups.

These results can be seen in Figure 4, which shows the actual as well as expected
number of lookup messages required to perform lookups in networks of 5 to 50 nodes.

Peer-to-Peer Data Lookup for Multi-agent Systems 209

Fig. 3. As the number of agents in the system is increased, the number of lookup messages ex-
changed increases linearly, as expected

Fig. 4. In both 2-dimensional and 3-dimensional CANs, the agent-based implementation shows
the expected lookup efficiency

It also includes the total number of messages used in these networks, including CAN
maintenance messages.

Agent Scalability. As important as it is for the DHT to remain efficient as the network
grows larger, it is equally important that the DHT maintain its performance as the num-
ber of agents accessing the DHT increases. Since agents which wish to collaborate must
in the worst case communicate with each other agent in the system, in the worst case,
the number of messages required for this collaboration could grow exponentially.

Fortunately, since the agents in our system are interacting only with the DHT, the
number of messages required should only grow linearly as the number of agents in
the system is increased. Thus, our second experiment tested the number of messages

210 M. Thomas and W. Regli

Fig. 5. The Indirect DHT Server provides more efficient registration for highly mobile, data-heavy
agents, but causes lookup times to increase twofold in all cases

exchanged in systems of increasing agents. Systems of 5-40 agents were tested and the
number of lookup messages and total messages were recorded. The results, shown in
Figure 3 confirm the expected linear behavior in the lookup messages, though some
variance in the number of registration messages is s due to the random nature of the key
selection.

Indirect Lookup. The Indirect DHT Server was created in order to alleviate the large
number of registration messages exchanged in systems with highly-mobile agents car-
rying large amounts of data. To test the effectiveness of this Indirect DHT Server, an
experiment was performed comparing the Indirect DHT Server to a standard or direct
DHT Server. For each type of DHT Server, a varying amount of data is assigned to a set
of 10 mobile agents. Each agent migrates between nodes on the network, reregistering
the location of the data it carries and performing a lookup of a single data item. Agents
are dispatched containing from 1 to 9 data items each.

Data lookup messages, data registration messages, and the overall number of mes-
sages were measured for each configuration. The number of registration messages ex-
changed in the Direct DHT configurations was linearly related to the number of data
items per agent. In the Indirect DHT configurations, the number of registration mes-
sages was constant. In both configurations, the number of lookup messages was con-
stant but the Indirect configurations took twice as many lookup messages, since both
the agent and location required lookup. These results can be seen in Figure 5.

Based on these results, both the Direct and Indirect DHT Servers seem to be useful
in different situations. For systems with agents carrying large amounts of data, the In-
direct Server resulted in fewer overall messages. Specifically, for agents performing a
single lookup at each network node, if agents are carrying at least 3 data items, using the
Indirect DHT Server results in fewer overall messages. Otherwise, it is more efficient
to use the simpler Direct DHT Server.

Peer-to-Peer Data Lookup for Multi-agent Systems 211

7 Discussion and Future Work

As mentioned earlier, one of the future areas of work that should be pursued is imple-
mentation of the various robustness and efficiency mechanisms proposed for CANs and
other DHTs. These would allow the system to be much more deployable in a real-world,
non-laboratory environment.

Additionally, it would be valuable to perform tests of the Agent-Enabled CAN on
an actual ad hoc tactical network, such as that available by the Secure Wireless Agent
Testbed (SWAT) project which distributes an agent-based system across multiple iPAQ
platforms on a wireless network.[15] This would validate both the CAN implementation
itself and the robustness techniques.

In ad hoc networks, mobile agent systems can provide a level of robustness in the
face of network realignment and node failure. To this end, services can be relocated
or redistributed across network nodes based on available resources. In such an envi-
ronment, CAN Zones could be redistributed across different sets of network nodes. To
provide this mobile index, it will be necessary to develop an algorithm to determine
how and when to redistribute portions of the CAN Zones across nodes.

If the agents, data, and index are simultaneously mobile, many maintenance mes-
sages will be required between CAN Servers. Additional work should be done to min-
imize these maintenance messages. Such a reduction could possibly be provided by
combining messages or by eliminating redundant messages. Additionally, the inherent
multicast capabilities of a CAN could be exploited to more efficiently deliver additional
maintenance messages.

8 Conclusions

This research has developed an adaptation of Content Addressable Network (CAN)
for mobile agents and implemented the approach within the Extensible Mobile Agent
Architecture (EMAA). The CAN allows an efficient, scalable data lookup mechanism
for mobile agents, specifically supporting the kind of distributed data storage needs for
mobile and ad hoc networking environments. Empirical validation shows that this im-
plementation provides the expected scalability of O(d | N |1/d) for both two and three
dimensional CANs. An Indirect DHT implementation was shown to provide increased
efficiency for systems of highly-mobile agents.

Additionally, several future enhancements to the implementation have been identi-
fied. These improvements will provide a CAN which is truly capable of handling the
specific characteristics of multi-agent system, particularly that of those operating in
dynamic, unreliable environments.

References

1. S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer file sharing
systems. In Proceedings of the Multimedia Computing and Networking (MMCN), San Jose,
CA, January 2002.

2. J. Ritter. Why gnutella can’t scale. no, really. Available from http://www.darkridge.com/
jpr5/doc/gnutella.html.

212 M. Thomas and W. Regli

3. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. In Proceedings of ACM SIGCOMM.

4. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of the 2001 conference on applications, technologies,
architectures, and protocols for computer communications, August 2001.

5. R. Lentini, G. Rao, J. Thies, and J. Kay. Emaa: An extendable mobile agent architecture. In
AAAI Workshop - Software Tools for Dev Agents, July 1998.

6. S. McGrath, D. Chacn, and K. Whitebread. Intelligent mobile agents in the military domain.
In Fourth International Conference on Autonomous Agents 2000, June 2000.

7. BBN Technologies. Cougaar architecture document. Technical report, BBN Technologies,
2003.

8. M. Kahn and C. Cicalese. The coabs grid. In Innovative Concepts for Agent-Based Systems:
First International Workshop on Radical Agent Concepts, WRAC-2002, volume LNCS 2564
of Lecture Notes in Computer Science, 2002.

9. K. Sycara, M. Paolucci, M. vanVelsen, and J. Giampapa. The retsina mas infrastructure.
Journal of Autonomous Agents and Multi-agent Systems (JAAMAS), pages 29–48, 2003.

10. J. Graham, K. Decker, and M. Mersic. Decaf - a flexible multi-agent system architecture. In
Autonomous Agents and Multi-Agent Systems, pages 7–27, 2003.

11. D. Lange, M. Oshima, G. Karjoth, and K. Kosaka. Aglets: Programming mobile agents in
java. In International Conference on Worldwide Computing and its Applications (WWCA
’97), volume LNCS 1274 of Lecture Notes in Computer Science, 1997.

12. P. Marrow, M. Kobarakis, R. van Lengen, F. Valverde-Albacete, E. Bonsma, J. Cid-Suerio,
A. Figueriras-Vidal, A. Gallardo-Antoln, C. Hollie, T. Koutris, H. Molina-Bulla, A. Navia-
Vzquez, P. Raftopoulou, N. Skarmeas, C. Tryfonopoulos, F. Wang, and C. Xiruhaki. Agents
in decentralised information ecosystems: the diet approach. In Proceedings of the Artificial
Intelligence and Simulated Behaviour Conference 2001 (AISB ’01), Symposium on Informa-
tion Agents for Electronic Commerce, pages 109–117, 2001.

13. J. McCormick, D. Chacn, S. McGrath, and C. Stoneking. A distributed event messaging
system for mobile agent communication. Technical Report TR-01-02, Lockheed Martin
Advanced Technology Labs, March 2000.

14. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using
content-addressable networks. In Lecture Notes in Computer Science, volume 2233, pages
14–25, 2001.

15. G. Anderson, D. Artz, V. Cicirello, M. Kam, N. Morizio, A. Mroczkowski, M. Peysakhov,
W. Regli, and E. Sultanik. Secure mobile agents on ad hoc wireless networks. In The
Fifteenth Innovative Applications of Artificial Intelligence Conference, Aculpulco, Mexico,
August 2003.

Intelligent Agent Enabled Genetic Ant
Algorithm for P2P Resource Discovery

Prithviraj(Raj) Dasgupta

Department of Computer Science,
University of Nebraska, Omaha, NE 68182

pdasgupta@mail.unomaha.edu
Phone: (402) 554 4966 Fax: (402) 554 3284

Abstract. Rapid resource discovery in P2P networks is a challenging
problem because users search for different resources at different times,
and, nodes and their resources can vary dynamically as nodes join and
leave the network. Traditional resource discovery techniques such as
flooding generate enormous amounts of traffic, while improved P2P re-
source discovery mechanisms such as distributed hash tables(DHT) in-
troduce additional overhead for maintaining content hashes on different
nodes. In contrast, self-adaptive systems such as ant algorithms provide
a suitable paradigm for controlled dissemination of P2P query messages.
In this paper, we describe an evolutionary ant algorithm for rapidly dis-
covering resources in a P2P network.

Keywords: Peer-to-peer systems, software agents, ant algorithm, adap-
tive systems, genetic algorithm.

1 Introduction

Over the past few years, peer-to-peer(P2P) systems have emerged as an attrac-
tive communication paradigm between users in a networked environment. In a
P2P network, every node behaves as a peer with similar functional capabilities.
This makes P2P networks suitable for connecting large numbers of users in a
distributed manner without worrying about scalability and centralized control
issues. One of the main challenges in P2P networks is to enable rapid and effi-
cient discovery of resources present on the different nodes of the network. In this
paper we describe an evolutionary algorithm inspired by the foraging behavior
in insect colonies such as ants to enable rapid exploration of the search space.

In most commerical P2P systems[6], resource discovery is implemented by
flooding a resource query across nodes of the network. Flooding generates con-
siderable traffic and ensues network congestion. Improved P2P resource discovery
algorithms employ super-peer nodes[14] and dynamic hash tables(DHT)[12,8] to
strategically place resources on nodes to enable rapid lookup. These techniques
address P2P resource discovery as a resource management problem. In contrast,
the genetic ant algorithm described in this paper uses information obtained from
previous resource queries to improve future searches. Ant algorithms have been

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 213–220, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

214 P. Dasgupta

applied to several hard problems[2,4] such as dynamic programming, the travel-
ling salesman problem and routing in telecommunication networks[5]. Resource
discovery in P2P networks is different from each of these problems because the
node on which the resource will be discovered is not known apriori and the topol-
ogy of the P2P network changes dynamically as nodes join and leave. Anthill[1]
employs ant-based algorithms for load balancing in a P2P network and ants
travel across the network to update routing tables at each node. In contrast, our
algorithm uses different types of pheromone and ants with different behavior to
make P2P resource discovery more efficient. Genetic ant algorithms have been
researched in [3,13,9] to evolve parameters of the algorithm itself. In this paper,
we use an evolutionary ant algorithm to evolve new routes in a P2P network.

2 Ant Algorithm for Peer-to-Peer Resource Discovery

The primary objective of a node in a P2P network is to search and acquire
resources available on other nodes in the network, and, simultaneously allow
other nodes to access resources present on the node itself. The traditional P2P
resource discovery protocol consists of a query message that is forwarded to
successive nodes in a breadth-first manner across the network until the resource
is discovered or the lifetime of the message expires. If the resource is found on a
node a queryHit message is sent back from the node possessing the resource to
the node that originated the query. The requesting node and the providing node
then decide on the download protocol for the resource.

The P2P resource discovery protocol can be made more efficient if the unin-
formed search in the traditional protocol can be provided with a heuristic-based
informed search. Our informed search algorithm for P2P resource discovery is
inspired by the foraging activity used by social insects such as ants[2] to locate
food sources. In several ant species, foraging ants searching for food leave be-
hind a pheromone trail along the path from their nest to the food source. Ants
searching for the food source later on use the trail as a positive reinforcement to
lead themselves to the food source.

The traditional ant algorithm uses pheromone as a positive reinforcement on
nodes visited by an ant which lead to a solution. We envisage that P2P search
can be made more efficient if an anti-pheromone is used to provide negative
reinforcement to an ant at a node that does not lead to a solution. However,
nodes that are not useful for locating one resource, might lead to or contain the
solution for another resource. To enable exploration of nodes marked with anti-
pheromone, we use another type of ant called explorer ants that are are neutral
to nodes with pheromone but get attracted to nodes with anti-phermone.

Based on these functionalities we have used the following types of ants in our
algorithm: (1) Forward Foraging Ants visit nodes searching for a resource and
deposit pheromone at each node they visit. From each node, a foraging forward
ant prefers to go to neighbor nodes that have higher amounts of phermone and
lesser amounts of anti-pheromone. (2) Forward Explorer Ants visit nodes
searching for a resource and deposit anti-pheromone at each node they visit.

Intelligent Agent Based Genetic Ant Algorithm for P2P Resource Discovery 215

From each node, a forward explorer ant prefers to go to neighbor nodes that have
higher amounts of anti-phermone. (3) Backward Ants Both types of forward
ants become a backward ant when either they discover the resource they are
searching for on a node, or, they reach the search boundary without discovering
the resource. Backward ants trace the route taken by their corresponding forward
ant in the reverse direction. A backward ant deposits pheromone at each node
it visits if the resource that the corresponding forward ant was looking for was
found, and, deposits anti-pheromone if the resource was not found.

3 P2P System Model

Our model of the P2P system comprises a connected network of N nodes. Nodes
join and leave the network at random. Each node maintains a forwarding table
containing the addresses of its neighbor nodes determined using the P2P node
discovery protocol. Each address in the forwarding table is associated with a
normalized weight that represents the pheromone associated with that node.
The weight of a node in the forwarding table gets updated when an ant selects it
to move to it. Pheromone increases the weight while anti-pheromone decreases
it. When a user at a node enters a query to search for a resource in the P2P
network, an ant gets created on the origin node for the query. The ant visits
different nodes of the network searching for the resource using the ant algorithm
described below.

3.1 Ant Algorithm

Forward Foraging Ant. The algorithm used by a forward foraging ant at a node
n to select a neighobor node i and update the weight associated with node i uses
the following parameters:

an Number of nodes in the forwarding table of node n
wt

i,n Normalized weight associated with neighbor node i of node n at time t
τn Amount of pheromone deposited on node n
τ0 Amount of pheromone deposited by ant at source node of the search
χn Amount of anti-pheromone deposited on node n
χ0 Amount of anti-pheromone deposited by ant on node at which

search boundary was reached after resource was not located
hs,n Number of hops made by an ant to reach from the node s

on which it started its journey to the current node n

The update rules for the pheromone at node n are the following:

τn =
τ0

[hs,n]α

wt
i,n = wt−1

i,n + τn(1 − wt−1
i,n) (1)

where s is the origin node that initiated the search query.

216 P. Dasgupta

wt
i,n =

wt
i,n∑i=an

i=1 wt
i,n

(2)

The factor α is determined expermentally and it controls the decrease in
the amount of pheromone deposited as the ant moves further away from its
origin. The second term on the r.h.s of Equation 1 ensures that the amount
of pheromone deposited on a node is proportional to its current weight. This
prevents excessive phermone (or anti-pheromone) being deposited on a node
whose weight is very high(or low). Equation 2 ensures that the weights of nodes
in the forwarding table remain normalized after the weight of a node is updated
by an ant.

Forward Explorer Ant. A forward explorer ant works in a manner similar to a
forward foraging ant except that it uses the inverse probability (1 − wt

i,n) to
select a node i from the forwarding table of its current node n. This ensures that
the probability of selection of a node by an explorer ant is proportional to the
amount of anti-pheromone deposited on it. A forward explorer ant updates the
anti-pheromone at each visited node according to the following equations:

χn =
χ0

[hs,n]α

wt
i,n = wt−1

i,n − χn(1 − wt−1
i,n) (3)

where s is the origin node for the explorer ant.

Backward Ant. When a forward ant locates a resource or reaches its search
boundary without locating the resource, it becomes a backward ant. If the re-
source was located by the forward ant, the backward ant rewards each node
along the reverse route with pheromone using Equation 1. Otherwise, if the
search boundary was reached without locating the resource, the backward ant
deposits anti-pheromone on each node it visits using Equation 3 to indicate that
the node did not lead to a succesful resource discovery. For the backward ant,
the node s represents the the node on which the resource was found (in Equation
1) or the node on which the search boundary was reached without locating the
resource (in Equation 3).

4 Genetic Ant Algorithm

In the ant algorithm described in section 3.1 each ant-type is associated with a
specific pheromone-type and the pheromone(anti-pheromone) along a particular
trail keeps on increasing as more foraging(explorer) ants follow that trail. Even-
tually, the paths in the network get partitioned into trails that are predominant
either in pheromone or in anti-pheromone, with the traditional ant algorithm
(one type of ant, one type of pheromone) running within each partition. This
problem can be addressed if two ants, each of a different type, periodically ex-
change the routes they have taken, even partially, with each other. This would

Intelligent Agent Based Genetic Ant Algorithm for P2P Resource Discovery 217

Fig. 1. Single crossover operator used when the routes represented by the two chro-
mosomes do not have any common nodes. (a) The routes(chromosomes) before
crossover, and, (b) The origin node, O, is introduced at the crossover point of the
routes(chromosomes) during crossover.

re-balance the amounts of pheromone and anti-pheromone along the trails in
the P2P network and prevent a network partition based on pheromone-type.
Trail exchange between ants also prevents ants from following routes that have
become outdated due to the dynamic joining and leaving of nodes.

Genetic algorithms(GAs)[10] provide a suitable mechanism for implementing
exchange of trails between ants. A GA enables a problem to rapidly converge to
an improved solution using an evolutionary mechanism. We have adapted the
traditional GA to evolve the routes taken by ants. We employ the ant algorithm
described in Section 3.1, to initially discover routes to resources in the P2P net-
work. When a certain number of search queries have originated from a particular
node, a GA is run on the node using the the routes traversed by the ants created
for each search query originating from the node. The different attributes used
the GA are described below:

– Fitness Function. The fitness function F for a route taken by an ant is
given by the following equation:

F = 1 − number of hops to locate resource
maxHops

, if the ant was successful

F = γ, if the ant was unsuccessful to locate the resource

The parameter γ represents the probability of recombining the children chro-
mosomes in the next generation.

– Chromosome Representation. For enabling the GA, a chromosome of an
ant is represented as the route (sequence of nodes) visited by the ant.

– Crossover Operator. The routes(chromosomes) traversed by the ants have
the following characteristics: a) the routes(chromosomes) might be of differ-
ent lengths b) the routes represented by the chromosomes may or may not
have common nodes between them. We have identified the following two
scenarios to address these issues:
Scenario 1: The routes represented by the two chromosomes participating
in the reproduction do not have any common nodes. As shown in Figure 1,
we select the crossover point randomly in each of the two parent chromo-
somes and use single point crossover. The origin node O is introduced at the

218 P. Dasgupta

crossover point after performing the crossover. This ensures that new entries
do not need to be introduced within the forwarding tables on the nodes at
the crossover points of the two participating chromosomes. Scenario 2: The
routes represented by the two chromosomes participating in the reproduction
have one or more common nodes. We use an n-point crossover operator. A
crossover point is determined as a node that is common between the two
chromosomes participating in the crossover. Since there can be more than
one pair of nodes common between two chromosomes, multiple crossover
points can exist. Therefore, we use the n-point crossover operator that ex-
changes the chromosomes of the parents between alternate pairs of crossover
points.

– Recombination. We reintroduce the evolved children ants obtained
through crossover into the parent population. The fitness of each child is
determined as the average value of the fitness of each parent.

5 Experimental Results

The P2P network used for our simulation contains N = 100 nodes. The number
of neighbors of each node is generated from a normal distribution with mean
N/20 and standard deviation 1.5. The neighbor nodes for every node are then
selected randomly and the connections between nodes are set up by initializing
the forwarding table inside each node. Resources are then simulated on each node
by adding a string identifier corresponding to the name of the resource inside
the resource table of a node. A resource is added on a node with a probability ρ
that denotes the availablity of the resource in the P2P network. Nodes are also
added and removed dynamically as the algorithm runs to simulate the joining
and leaving of nodes in a P2P network.

Figure 2(a) shows the percentage of successful search queries in the network
when we vary the probability p with which a forward ant decides to forage or
to explore when it is created. p = 1.0 means that the ant is created a forward
foraging ant while p = 0 means that the ant is created as a forward explorer
ant. When the network is initially set up there is no pheromone on any node.
Therefore, at the beginning of our simulation we created all ants as foraging
ants(p = 1.0) and gradually decreased p until all ants were created as explorer
ants (p = 0). Other parameters used for this experiment were ρ = 0.15,(resource
availability on nodes) α = 4.0 (pheromone decay rate with distance from ant’s
origin) and a searchLimit of 10 hops. The results of our experiments illustrate
that the number of successful search queries increase when the value of p is in
the range of 0.4 to 0.8 with a mean of around p = 0.72. The reason for this
can be attributed to the fact that with ρ = 0.15, resources are very likely to
be located before the searchLimit of 10 hops(among 100 nodes) is reached.
Therefore, nodes that have been marked with pheromone by foraging ants right
after set up are likely to lead to sucessful location of resources for subsequent
searches.

Figure 2(b) shows the effect of using a genetic ant algorithm for P2P re-
source discovery for different values of γ, that denotes the probability of recom-

Intelligent Agent Based Genetic Ant Algorithm for P2P Resource Discovery 219

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
65

70

75

80

85

90

Probability of ant being created as foraging ant

P
er

ce
n

ta
g

e
o

f
su

cc
es

sf
u

l s
ea

rc
h

es

(a)

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
50

55

60

65

70

75

80

85

90

95

100

Fraction of Availability of resource in network

P
er

ce
n

ta
g

e
o

f
su

cc
es

sf
u

l s
ea

rc
h

es

searchLimit = 10 hops
N = 100 nodes

p = 0.7

p = 0.1

p = 1.0

(b)

Fig. 2. (a)Percentage of successful searches in a P2P network for different probabilities
of an ant being created as a foraging ant. (b)Percentage of successful searches vs.
fraction of availability of resource in the P2P network (ρ) for different values (p = γ)
of the probability of recombining the children chromosomes in the next generation.

bining the children chromosomes in the next generation, as the availability of
the resource in the network increases. With γ = 0.1, very few unsuccessful ants
are selected by the fitness function. The ant algorithm then employs only suc-
cessful ants along established trails. Consequently, the ant algorithm does not
perform as efficiently because ants continue to visit nodes they have already
visited before. When γ = 0.7 the number of unsuccessful ants being selected
by the genetic algorithm increases. As shown in Figure 2(b), the percentage of
successful searches improves with γ = 0.7. With trails from unsuccessful ants be-
ing crossed-over with successful trails, ants visit more nodes on which resources
have not yet been discovered to enable rapid resource search. Moreover, foraging
ants depositing pheromone also visit unsuccessful trails from the previous gen-
eration that had anti-pheromone along them and vice-versa. This rebalances the
amounts of the two pheromones across the network to improve the performance
of the search. When γ is further increased to 1.0, unsuccessful ants and trails
with anti-pheromone are selected aggresively. However, this results in ants only
following previously unsuccessful trails that have anti-pheromone. Consequently,
the percentage of successful searches reduces and reverts to a value similar to
the performance obtained with lower values of γ. Figure 2(b) illustrates that a
moderate value of γ in the range of 0.5 to 0.7 is most effective in evolving the
routes in the genetic ant algorithm to enable rapid resource discovery.

6 Conclusion and Future Work

In this paper, we have described an informed search mechanism using a genetic
ant algorithm for P2P resource discovery. The genetic ant algorithm is employed
as a perturbation mechanism to redistribute different types of pheromone along

220 P. Dasgupta

the different routes in the network and prevents a partition of the network based
on pheromone type. The efficiency of the genetic ant algorithm depends on the
rate at which nodes, along with the resources within them, join and leave the
network. Our simulations show that the genetic ant algorithm performs better
than the traditional ant algorithm mainly when resources are scarce. In the fu-
ture, we propose to investigate a cooperative multi-agent framework that allows
ants from different nodes to exchange trail information with each other through
a gossip mechanism to locate resources rapidly. We envisage that ant algorithms
implemented through software agents provide a useful direction for further ex-
ploring challenges and issues of P2P networks for future research.

References

1. Babaoglu, O., Meling, H., and Montresor, A.: Anthill: A framework for the develop-
ment of agent-based peer-to-peer systems. In: Proceedings of the 22nd International
Conference on Distributed Computing Systems(ICDCS), 2002, pp. 15-22.

2. Bonabeau, E., Dorigo, M., and Theraulaz, G.,: Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, 1999.

3. Botee, H., and Bonabeau, E.,: Evolving Ant Colony Optimization. In: Journal of
Advanced Complex Systems, vol 1., 1998, pp. 149-159.

4. Dasgupta, P.,: ‘Improving Peer-to-Peer Resource Discovery Using Mobile Agent
Based Referrals. In: Proceedings of the 2nd Workshop on Agent Enabled P2P
Computing, Australia, July 2003, pp. 41-54.

5. Di Caro G.,and Dorigo, M.,: AntNet: Distributed Stigmergetic Control for Com-
munications Networks. In: Journal of Artificial Intelligence Research, vol. 9, 1998,
pp. 317-365.

6. Gnutella, URL http://www.gnutella.com
7. Kazaa, URL http://www.kazaa.com
8. Kubiatowicz, J., et al.: OceanStore: An Architecture for Global-Scale Persistent

Storage. In: Proceedings of the ACM ASPLOS, 2000, pp. 190-201.
9. Monmarche, N., Ramat, E., Desbarats, L., and Venturini, G.,: Probabilistic Search

with Genetic Algorithms and Ant Colonies. In: Proceedings of the Optimization
by Building and Using Probabilistic Models Workshop, Genetic and Evolutionary
Computation Conference, 2000, pp. 209-211.

10. Mitchell, M.,: An Introduction to Genetic Algorithms. MIT Press, 1996.
11. SETI URL http:// setiathome.ssl.berkeley.edu
12. Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrishnan, H.,: Chord: A

peer-to-peer lookup service for internet applications. In: Proceedings of the ACM
SIGCOMM Conference, 2001, pp. 149-160.

13. White, T., Pagurek, B., and Oppacher, F.,: ASGA: Improving the Ant System by
Integration with Genetic Algorithms. In: Proceeding of the 3rd Genetic Program-
ming Conference, July 1998, pp. 610-617.

14. Yang B., and Garcia-Molina, H.,: Designing a super-peer network. In: Proceedings
of the 19th International Conference on Data Engineering (ICDE), March 2003.

Photo Agent:
An Agent-Based P2P Sharing System

Jane Yung-jen Hsu, Jih-Yin Chen, Ting-Shuang Huang,
Chih-He Chiang, and Chun-Wei Hsieh

Department of Computer Science & Information Engineering,
Institute of Networking and Multimedia,

National Taiwan University, Taipei, Taiwan
yjhsu@csie.ntu.edu.tw

{b89014, b89009, b89015, b89027}@csie.ntu.edu.tw

Abstract. With the proliferation of content creation devices, sharing
digital contents has become an increasingly common task in our daily
lives. This research proposes the “Photo Agent” that helps users manage
and share digital photos without explicit file manipulation and data com-
munication. The agents shares photos autonomously and pro-actively, so
users can simply specify which pictures to share with whom, rather than
how the pictures are actually distributed and searched. The prototype
photo agent utilizes peer-to-peer networking to support efficient content
sharing in a distributed environment.

1 Introduction

There has been a growing demand for easy ways to share the large amount of
digitally captured contents with family and friends. InfoTrends Research Group
forecasted worldwide digital camera sales to reach 53 million units sold in 2004,
and to continue growing at a 15% annual rate to reach 82 million units sold
in 2008[1]. While commercial or open source software packages, i.e. ACDSee[2],
Paint Shop Photo Album[3], and Gallery[4] etc., help people organize digital
photos on their personal computers or the web, such tools often require too much
direct manipulation, thereby rendering photo sharing a chore. Some important
challenges for a better photo sharing system include:

– efficient storage of a large number of images captured over time;
– efficient retrieval of specific images from the collection;
– effective content sharing mechanism given differences in user device, network

bandwidth and availability;
– guaranteed delivery of contents; and
– intelligent search of contents from shared sources.

The proposed Photo Agent employs a human-centric approach to managing
and sharing digital photos over a peer-to-peer (P2P) network. Photo Agents
share photos autonomously and pro-actively, so users simply specify which pic-
tures to share with whom, rather than how the pictures are actually distributed

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 221–228, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

222 J.Y.-j. Hsu et al.

and searched. The intuitive agent-based interface enables users to be freed from
file management and networking details.

In what follows, we start by presenting the overall system design architecture
We then define access rights and agent communication protocol. Sections 4/5
describe details of the sharing/searching algorithms respectively. The prototype
system implementation is outlined in Section 6, followed by the conclusion.

2 System Architecture

The photo agents operate on a distributed P2P network without a central server.
Each node, called a peer, is responsible to help relay contents from the other
nodes. Contents are collected and re-distributed to other peers through end-
system multicast[5]. The cooperation of peers helps reduce the load on the node
that sends content to a large group of friends. An agent-based peer[6] is an au-
tonomous node that perceives the current network environment and makes the
best decision to facilitate photo transmission and redirection.

As is shown in Figure 1, each node consists of four major components: man-
agement agent, sharing agent, searching agent, and the photo database.

Fig. 1. Architecture of the photo agent

The management agent manages indexing, storage, and retrieval of digital
images. It also delegates sharing and searching tasks from the user to the shar-
ing and searching agents. The user interface provides functions for importing,
sorting, and annotating photos. Duplicates photos are removed to optimize disk
utilization. The sharing agent is in charge of distributing any set of photos to
the target group as specified by the user. The cooperation of sharing agents
on the network forms a sharing tree to ensure an efficient and reliable sharing
process[7]. The searching agent helps a user to locate specific contents residing
in the photo database of another peer. Depending on the searching algorithm
and the access rights of the target content, multiple searching agents cooperate
on the P2P network to return a group of useful results. Agents engage in active
communication in carrying out the sharing and searching tasks.

Photo Agent: An Agent-Based P2P Sharing System 223

3 Control and Communication

This section defines the access control and agent communication protocol in the
proposed photo agent system.

In a P2P sharing system, it is necessary for users to protect their contents
with access control[8]. Table 1 shows the definition of access rights in terms of
four attributes[9]. The owner has complete access and can modify any attribute
of his own photos. The value of Share lifetime decreases by one every time the
photo is shared to another user. When the Share lifetime becomes 0, the Search
level is set to nobody automatically. To preserve privacy, the Search level can
only be adjusted lower except by the photo owner. Access right specifications
should remain with a given photo, even when it is exported or shared.

Table 1. Attributes of access rights for a digital photo

Attribute Attribute definition Possible value
Photo owner The user who imports the photo The owner ID
Export right The right to export this photo Yes/No

Share lifetime The number of nodes this photo can be shared 0/positive integer/∞
Search level The level that a photo can be searched all/friend/nobody

In sharing and searching photos, a photo agent needs to exchange status and
preference information with the other agents. The basic message types include
share, request, info, report, search, and redirect. The info message is used to com-
municate the capabilities and preferences of the given node. Figure 2 illustrates
the sample communication transcripts of relaying reduced photos to be shared
and search requests.

agent A agent B agent C

share request

info
share: reduced photos,

share list
share request

info
share: reduced photos

reply: original photos

report
report

photo request

redirect

share: original photos

photo request

(a) Sharing

search: info, keyword

search: info, keyword
reply

photo request

reply: original photos

reply: reduced photos

agent A agent B agent C

(b) Searching

Fig. 2. Agent communication

224 J.Y.-j. Hsu et al.

4 Photo Sharing

P2P file sharing systems, ranging from fully distributed models like Gnutella[10]
to centralized models such as Napster, have gained tremendous popularity. Shar-
ing personal experiences, in the form of images or videos, is a promising appli-
cation area of P2P sharing technology. A good photo sharing system[11] needs
to distribute the contents efficiently and to ensure successful delivery of shared
contents. Instead of a central server that relays files to their destinations, content
delivery is distributed in a P2P network. Each node is responsible for relaying
photos to its peers. Figure 3(a) illustrates a sharing structure for distribut-
ing content from the source node A, to the relay nodes B and C, and then to
all remaining target nodes D through H. The sharing agent at each node can
autonomously decide the appropriate relay nodes from its sharing list[12]. To

(a) A simple sharing tree (b) Bottom-up report message flow

Fig. 3. P2P Photo Sharing

reduce bandwidth requirement, reduced images of the shared photos are propa-
gated through the sharing tree structure. The reduced photos act as the “tickets”
for requesting the original photos from the owners.

The sharing agent on a relay node is in charge of relaying the photos to
its assigned subset of target nodes. Each relay node is expected to report the
successful (or failed) deliveries back to its parent node. Figure 3(b) illustrates the
bottom-up reporting result if node D remains off-line. The Photo Agent system
needs to ensure that each file is sent to its destination, even if the target peer
is currently off-line. When node B gets no report from node D after a period of
time, it reports back to the parent node A that D and H has not received the
photo. The sharing agents on both nodes A and B will attempt to catch D and
H when they get back online at a later time. Without a central server, the relay
nodes have to record the unfinished sharing jobs. If a delivery is not possible
when the nodes are never online at the same time, alternative delivery channels,
e.g. email, may be used.

Photo Agent: An Agent-Based P2P Sharing System 225

4.1 Construction of Sharing Tree

In general, the number of relay nodes R should increase with the node’s band-
width B and the number of target nodes T , i.e. R = f(B, T). The function f
needs to

– Bound the file transfer time of the source node to t, and
– Compact the height of the sharing tree to h.

Let n be the number of photos to be transferred and a be the average size of a
typical photo image, we have n×a

B × R ≤ t. As a result, the upper bound of R is

R ≤ B × t

n × a
. (1)

The height of the sharing tree should be under h, that is, 1+ �log�T
R�� ≤ h. The

lower bound of R is found to be

R ≥ T

2h−1 . (2)

To select the best relay nodes, each target node is assigned a score s based
on its current end-to-end connection quality with the source node, denoted as q,
and its past recorded successes p. That is,

s = α · q + β · p (3)

where α and β specify the relative weights of bandwidth vs. past record.
Suppose that information about bandwidth and connection quality are ag-

gregated in global lookup tables over time. Algorithm 1 presents the process of
constructing the sharing tree. Let sharingList denote the list of target nodes,
and relayList denote the list of relay nodes.

Algorithm 1. Sharing with global info
Given global lookup tables Q, P and B, construct the sharing tree.
Require: sharingList: A list of nodes for tree construction
1: relayList ← source node
2: for i ∈ relayList do
3: for j ∈ sharingList do
4: S(j) ← α · Q(i, j) + β · P (j)
5: end for
6: R ← f(B(i), |sharingList|)
7: Child(i) ← highest scoring R nodes from sharingList
8: relayList ← relayList \ {i} ∪ Child(i)
9: sharingList ← sharingList \ Child(i)

10: end for

Algorithm 1 constructs the sharing tree by recursively selecting the R top-
scoring nodes from sharingList to serve as the relay nodes. The construction

226 J.Y.-j. Hsu et al.

process terminates when sharingList is exhausted, and the entire sharing tree is
created in one shot.

When the global information about bandwidth, connection quality, and past
record is not available, or when the network properties change frequently, it is
not a good idea to construct a static sharing tree as described above. Instead
of aggregating information in global tables, each node owns a local table that
contains the information of a limited number of nodes. Given such incomplete
information, the sharing tree is constructed as a result of cooperation by all
nodes involved. Each node probes the others to retrieve and update the necessary
information. In contrast to Algorithm 1, which builds the complete sharing tree
at the root node, each node contributes in Algorithm 2 by constructing a part
of the sharing tree with k-level lookahead. Parameter sharingTree is the tree
structure under construction, while parameter sharingList is a list of target nodes
to be assigned to the sharingTree.

First, the current node decides the appropriate number of relay nodes and
the levels of sharing tree it plans to build. Algorithm 2 then proceeds with con-
structing the sharing tree and all related nodes. Meanwhile, information in the
local lookup table is updated through cooperation. Finally, the updated sharing
tree and sharing list are sent to each relay node to continue the construction of
the sharing tree.

Algorithm 2. Sharing without global info
Construct the sharing tree with k-level lookup.
Require: sharingTree, sharingList
1: Decide r, the number of relay nodes from the current node.
2: Decide k, the levels of sharing to be constructed from the current node.
3: for i = 1 to k do
4: for y ∈ next i-level relay nodes do
5: Select the best r nodes as the relay nodes.
6: Construct the next level of sharing trees from node y.
7: end for
8: end for
9: Update sharingTree and sharingList.

10: Send the updated lists to the relay nodes at the next level.

The sharing agents distribute reduced images of the pictures to be shared
using the sharing tree. The target user is then notified about the newly shared
pictures. Requests for the original photos are only made when the user decides
to accept the selected content.

5 Photo Searching

An alternative mode of sharing is to allow users to search for specific photos from
the collections maintained by their peers. Given a search request, the searching

Photo Agent: An Agent-Based P2P Sharing System 227

agent broadcasts the request to its peers[12]. Each request message should in-
clude the following fields.

RootID: ID of the agent making the original request.
Deadline: The maximum time for request propagation.
Query: Specification of the target images.
Relay: Whether the request is a relay search.

To eliminate redundant search requests, path information is recorded so that a
request will not be sent to the same node twice. When a match is found, the
corresponding reduced image is sent back to the requesting agent along with
the original query and agent ID. The user can then select from the matching
photos to request originals from their owners. Figure 3 illustrates the searching
algorithm. Line 2 queries the local collection using local search. Lines 3-7

Algorithm 3. Searching
Searching Algorithm.
Require: RootID, Deadline, and Query
1: if Deadline > 0 then
2: result ← local search(Query)
3: for z ∈ result do
4: if access right(z) then
5: send photo(RootID, z)
6: end if
7: end for
8: Forward the request with a reduced deadline to everyone on the friend’s list.
9: end if

check the access rights for legal distribution. Line 8 forwards the request to all
peers for more matching results.

6 Implementation and Concluding Remarks

The Photo Agent is designed to provide a simple interface that helps users
manage photos conveniently, share photos efficiently, and protect photos safely.
A prototype system has been developed to support content sharing in a server-
less decentralized peer-to-peer network. Figure 4 shows the browser interface
implemented in PHP with MySQL for data management. P2P sharing/searching
is built on top of JXTA[13]. Experiments of the prototype photo agents were
carried out using desktop and laptop PCs running Windows XP. Initial results
show that agent-based P2P sharing is a light-weight and efficient approach to
content management and distribution on the Internet.

As the population of digital camera owners grows rapidly, photo agents will
become an indispensable tool for ad hoc photo sharing. Further experiments
and analysis are necessary to improve the sharing and searching algorithms to

228 J.Y.-j. Hsu et al.

(a) Sharing selected photos (b) Notification

Fig. 4. Photo Agent Interface

ensure fast and reliable content delivery. The proposed agent-based P2P sharing
mechanism can be readily extended to other kinds of digital content in the near
future.

This research is sponsored in part by the ROC National Science Council
grant NSC-93-2213-E-002-087.

References

1. InfoTrends Research Group: Worldwide consumer digital cemera forcast (2003)
2. ACD Systems: ACDSee 6.0 (2004) http://www.acdsystems.com/.
3. Jasc Software: Paint shop photo album 4 (2004) http://www.jasc.com/products/

photoalbum/.
4. SourceForge.net: Gallery 1.4.2 (2004)
5. Chu, Y.H., Rao, S.G., Zhang, H.: A case for end system multicast. In: ACM

Sigmetrics. (2000) 1–12
6. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Second edn.

Prentince Hall (2002)
7. Nagi, K., Elghandour, I., Konig-Ries, B.: Mobile agents for locating documents in

Ad Hoc networks. In: Proceedings of the Workshop on Agents and Peer-to-Peer
Computing at AAMAS 2003. (2003)

8. Liu, Q., Safavi-Naini, R., Sheppard, N.P.: Digital rights management for content
distribution. In: Proceedings of the Australasian information Security Workshop
Conference on ACSW Frontiers 2003. (2003) 49–58

9. Feigenbaum, J., Freedman, M., Sander, T., Shostack, A.: Privacy engineering for
digital rights management systems. In: Proceedings of the 2001 ACM Workshop
on Security and Privacy in Digital Rights Management. (2001) 76–105

10. Clip2: The Gnutella Protocol Specification v0.4. (2001)
11. Aberer, K., Cudre-Mauroux, P., Datta, A., Hauswirth, M.: PIX-Grid: A platform

for P2P photo exchange. In: Proceedings of Ubiquitous Mobile Information and
Collaboration Systems (UMICS 2003), collocated with CAiSE’03. (2003)

12. Turcan, E., Shahmehri, N., Graham, R.L.: Intelligent software delivery using P2P.
In: IEEE Proceedings of Second International Conference on Peer-to-Peer Com-
puting. (2002) 136–143

13. Sun Microsystems: Project JXTA v2.0: JavaTM Programmer’s Guide. (2003)

How Social Structure Improves Distributed
Reputation Systems - Three Hypotheses�

Philipp Obreiter, Stefan Fähnrich, and Jens Nimis

Institute for Program Structures and Data Organization,
Universität Karlsruhe (TH),
D-76128 Karlsruhe, Germany

{obreiter, nimis}@ipd.uni-karlsruhe.de
stefan@faehnrich.de

Abstract. Reputation systems provide an incentive for cooperation in
artificial societies by keeping track of the behavior of autonomous enti-
ties. The self-organization of P2P systems demands for the distribution of
the reputation system to the autonomous entities themselves. They may
cooperate by issuing recommendations of other entities’ trustworthiness.
The recipient of a recommendation has to assess its truthfulness before
taking it into account. The current assessment methods are based on
plausibility considerations that have several inherent limitations. There-
fore, in this paper, we propose social structure as a means of overcoming
some of these limitations. For this purpose, we examine the properties of
social structure and discuss how distributed reputation systems can make
use of them. This leads us to the formulation of three hypotheses of how
social structure overcomes the limitations of plausibility considerations.
In addition, it is pointed out how the hypotheses can be tested.

1 Introduction

In general, autonomous agents lack inherent incentives to exhibit cooperative be-
havior in open artificial societies. The predominance of uncooperative behavior
leads to the emergence of a market for lemons [1] that, in turn, deprives coop-
erative agents of incentives for participation. Therefore, it is crucial to provide
incentives for cooperation. The analysis of the design space of such incentives [2]
has shown that the enforceability of every incentive pattern eventually relies on
a reputation system. A reputation system keeps track which agents keep their
promises and which do not. This information is exploited in order to pre-estimate
the behavior of potential transaction partners. By this means, a reputation sys-
tem supports the trust formation process of each agent.

The application of reputation systems to self-organized P2P systems appears
especially challenging. In the absence of any commonly trusted entity, the repu-
tation system has to be distributed to the autonomous agents themselves. They

� The work done for this paper is partly funded by the German Research Community
(DFG) in the context of the priority programs (SPP) no. 1140 and no. 1083.

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 229–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

230 P. Obreiter, S. Fähnrich, and J. Nimis

have to make up for the lack of centralized reputation processing by exchanging
recommendations of other agents’ trustworthiness [3] . The major challenge of
distributed reputation systems consists in assessing the truthfulness of such rec-
ommendations. In this regard, a recommendation is truthful if it corresponds to
the experiences made by the recommender.

The existing approaches for distributed reputation systems (e.g., [4,5]) make
use of plausibility considerations in order to provide for such assessment. This
means that the impact of a recommendation is contingent upon its plausibility
which, in turn, depends on its compatibility with prior beliefs. Such schemes
are vulnerable to misbehavior that is aimed at influencing the plausibility con-
siderations themselves [6]. In the human society, plausibility considerations are
complemented with considerations based on social structuring in order to in-
crease the accuracy of assessing recommendations [7,8,9]. This observation leads
us to propose the application of social structure to distributed reputation sys-
tems for artificial societies.

The paper is structured as follows: In Section 2, we analyze distributed rep-
utation systems and point out the limitations of existing approaches to assess
the truthfulness of recommendations. In Section 3, we examine the properties
of social structure and the means of making use of them in distributed reputa-
tion systems. We formulate three hypotheses of how social structure improves
distributed reputation systems in Section 4. The paper is concluded in Section 5.

2 Distributed Reputation Systems

In our previous work [6], we provided an analysis of distributed reputation sys-
tems and proposed the use of non-repudiable tokens (so-called evidences) in
order to improve their effectiveness. In this section, we recapitulate the findings
of that work and point out the need for a complementary means of increasing
the effectiveness of distributed reputation systems.

System Model and Requirements. We assume a system that consists of au-
tonomous agents that may exchange messages through authenticated channels.
Each agent runs a local instance of the reputation system. These instances may
cooperate by exchanging recommendations. The issuer of a recommendation (rec-
ommender) communicates the trustworthiness of a certain agent to the recipient
of the recommendation. Recommendations may be untruthful. Therefore, the re-
cipient has to assess the truthfulness of the recommendation before taking it into
account. In the following, an agent that performs such assessment will be referred
to as assessor.

Limitations of Plausibility Considerations. Plausibility considerations are con-
tingent upon prior beliefs. More specifically, the considerations comprise two
parts. On the one hand, a recommendation is assessed as rather trustworthy if
it is compatible to the first hand experiences made by the assessor itself. On the
other hand, the more the recommender is trusted the more the recommenda-
tion is regarded as truthful. In [6], we identified and discussed the limitations of

How Social Structure Improves Distributed Reputation Systems 231

plausibility considerations. In the following, we focus on three limitations that
are addressed by the hypotheses of Section 4.

1. Support for newcomers: If an agent enters into the system for the first
time, he lacks first hand experiences with other agents. In addition, the
newcomer does not know which agent can be trusted as a recommender.
Consequently, newcomers are not able to evaluate the plausibility of recom-
mendations.

2. Recognition of praising: Agents are able to form a collusion by mutually
overstating their trustworthiness. The colluding agents may render their mu-
tual recommendations plausible by truthfully recommending entities that are
not member of the collusion. Hence, such praising cannot be fully identified
by the means of plausibility considerations.

3. Dissemination of recommendations: Self-recommendations are needed
in situations in which the agents that are aware of the good conduct are
offline or unwilling to issue recommendations about the respective agent.
If self-recommendations are infeasible in such circumstances, the dissemi-
nation of recommendations is not effective. From the point of view of ef-
ficiency, the use of self-recommendations would also be desirable since an
agent would be able to self-recommend on demand whenever a transaction is
imminent. However, the use of plausibility considerations implies that a self-
recommendation can only be credibly communicated if its issuer has a good
reputation. Yet, in such a case, the other agents would already be aware of
the good conduct of the self-recommender so that the self-recommendation
becomes dispensable. Therefore, self-recommendations are not meaningful
if plausibility considerations are applied. As a result, the dissemination of
recommendations is neither effective nor efficient.

Limitations of Evidence Awareness. In [6], it is proposed to make use of evidences
in order to overcome the limitations of plausibility considerations. An evidence
is a non-repudiable token that may be arbitrarily transferred1. In contrast to
plausibility considerations, the application of evidences achieves a coupling be-
tween the actual behavior and the assessment of recommendations about it. This
is because the assessment of such behavior is conducted as a verification process
that is solely based on evidences. Yet, the coupling is not perfect since there are
inherent restrictions for the issuance of evidences. If behavior is not documented
by evidences, it has still to be assessed by the means of plausibility considera-
tions. Therefore, some limitations of plausibility considerations cannot be fully
overcome.

For the three limitations that we consider in this paper, the application of
evidences translates as follows: Newcomers are better supported since they do
not have to resort to plausibility considerations if evidence based verification is
possible. However, they still lack support for the assessment of undocumented
behavior. Furthermore, evidences do not provide a means of coping with praising.
1 The term evidence has been used differently in reputation systems. In [3,10], it

depicts witnessed circumstances, i.e., first hand experiences and recommendations.

232 P. Obreiter, S. Fähnrich, and J. Nimis

This is because the colluders could agree to mutually issue evidences of their
good conduct. Finally, the transferability of evidences allows for disseminating
self-recommendations. Yet, agents will provide a one-sided view of their track
record by only including evidences of his good behavior. However, the number
positive evidences does not give information about the ratio of good and bad
behavior of the self-recommender. Therefore, it is unclear to which extent such
one-sidedness compromises the meaningfulness of self-recommendations.

We conclude that evidence awareness has to be complemented by a further
approach in order to overcome the limitations of plausibility limitations.

3 Social Structure

In this section, we present social structure as an approach that copes with the
remaining limitations of plausibility limitations. For this purpose, we define the
concept of social structure and examine its properties. Subsequently, we point
out how social structure can be applied in distributed reputation systems and
discuss existing approaches that pursue this idea.

3.1 Definition and Properties

According to Giddens [9], social structure is defined as ”the patterning of in-
teraction, as implying relations between actors or groups, and the continuity
of interaction in time”. From this definition, we deduce the following two main
aspects:

– Relationships: The patterning of interaction implies that an agent may
establish a relationship with some of the other agent. Such a relationship has
a certain type and does not have to be mutual in nature. In the following,
we refer to a relationship of an agent A with an agent B as A −→type B.
Relationships are either directed (e.g., Child −→obedience Parent) or mutual
(e.g., Child ←→reliance Parent). The introduction of relationships facilitates
the formation of groups. In this regard, a group is a set of agents that have
mutual relationships of the same type.

– Dynamics: The temporal notion of the definition implies that relationships
are not necessarily pre-defined. They might as well be adaptive such that the
relationship network is responsive to time-variant cooperation patterns. In
such a case, there have to be criteria of when a relationship is to be established
and cancelled. If a relationship is directed, each agent is able to test these
criteria and perform the establishment and cancellation of relationships on
himself. However, for mutual relationships, the agents have to coordinate
the establishment and cancellation of their relationship. Therefore, mutual
relationships are more difficult to maintain than directed ones.

3.2 Application to Distributed Reputation Systems

We propose to apply social structure to distributed reputation systems in order
to overcome the limitations of plausibility considerations. For this purpose, we

How Social Structure Improves Distributed Reputation Systems 233

examine how a distributed reputation system can make use of the properties of
social structure.

There are several types of relationships that make sense in the context of a
distributed reputation system. The trust-relationship and distrust -relationship
refer to high and low levels of trust respectively. A more specific type of relation-
ship is the bail -relationship. If an agent (bailor) establishes such a relationship
to another agent (bailee), he agrees to be punished for the misbehavior of the
bailee. Therefore, the establishment of a bail-relationship necessitates especially
high trust levels by the bailor.

Based on these types of relationships, the distributed reputation system can
be extended as follows:

– Dissemination of recommendations: If an agent wants to evaluate trust-
worthiness of other agents, he prefers to ask those agents with whom he has a
trust-relationship. For the pro-active dissemination of one’s own recommen-
dations, the recommender has to know which agents have a trust-relationship
with himself, as it is the case for mutual trust-relationships.

– Assessment of recommendations: Upon receival of a recommendation,
an agent has to assess its truthfulness. Such assessment can be based on his
relationship with the recommender. This means that the assessor perceives
the recommendation as more truthful if he has a trust-relationship with the
recommender.

– Self-recommendations: An agent is able to self-recommend by stating
which agents have a bail-relationship with him. The more bailors an agent
has, the more he appears trustworthy. The assessor of such a self-recommen-
dation has to be convinced that the stated agents are indeed bailors. There
are two means of doing so. First, the assessor may request that the stated
agents confirm their status as bailors. Yet, the agents might be offline or
not willing to respond to such request. Second, a bailor may render the bail-
relationship non-repudiable by handing over an evidence of the relationship
to the bailee. In such a case, a self-recommender is able to prove that the
stated agents are indeed ready to bail for him. The disadvantage of this ap-
proach is that bail-relationships either cannot be cancelled or are temporally
bounded. In the latter case, bail-evidences have to be issued repeatedly.

3.3 Existing Approaches

Among the existing distributed reputation systems [4,5,11,12], only few make
use of social structure. In the following, we take a closer look at them.

Friends&Foes [11] is a distributed reputation system that makes use of an
adaptive social structure2. It consists of two types of directed relationships, i.e.,
the trust-relationship (so-called friends) and the distrust -relationship (so-called
foes. These relationships make the one-sided trust levels explicit. Yet, they are
2 A further distributed reputation system based on the notion of friends is presented

in [5]. It applies directed trust-relationships but fails to make them explicit. Hence,
the contents of recommendations cannot be based on social structure.

234 P. Obreiter, S. Fähnrich, and J. Nimis

only exploited for the formation of trust. Hence, the dissemination and assess-
ment of recommendations does not make use of the social structure.

The Buddy System [12] is a further distributed reputation system that applies
social structure. The only type of relationship is a mutual buddy-relationship that
is established adaptively between a pair of agents (so-called buddies). A buddy-
relationship is a combination of the trust-relationship and the bail -relationship.
There are two criteria for its establishment. Apart from mutually trusting each
other, the agents have to perceive the trustworthiness of other agents likewise.
This additional criterion is called similarity of world views. It is set in place in
order to reduce the conflict potential between buddies. Buddy-relationships are
not documented with evidences. Therefore, the assessor of a self-recommendation
probabilistically contacts some of the alleged bailors. Based on their responses,
the assessor makes a projection of the actual number of buddies. Recommenda-
tions about third parties can also be issued in the Buddy System. The recom-
mender disseminates them to his buddies.

4 The Impact of Social Structure: Three Hypotheses

In this section, we formulate three hypotheses of how social structure overcomes
the limitations of plausibility considerations. Furthermore, we point out the in-
tuition that lies behind each hypothesis and discuss for each hypothesis how it
can be tested in the context of simulations.

Hypothesis 1: Orientation for Newcomers
Social structure provides an orientation for newcomers such that they
are able to assess the trustworthiness of other agents.

The intuition behind this hypothesis is that the trustworthiness of agents is
reflected in the relationship network of the social structure. Hence, it suffices for
a newcomer to gain an overview of the relationship network in order to find out
about the trustworthiness of the other agents. For this purpose, a newcomer has
to request self-recommendations from those agents he is interested in.

For the test of this hypothesis, the performance of newcomers has to be com-
pared for a distributed reputation system with and without social structure. In
this respect, performance refers to the portion of successful transactions, i.e.,
transactions without defection. The hypothesis can be validated if the perfor-
mance experiences a sustained amelioration by the presence of social structure.

Hypothesis 2: Protection Against Collusions
Social structure curbs the impact of colluding agents that mutually
praise.

In the presence of social structure, colluders have to choose among two op-
tions. If they opt to make their collusion explicit by establishing mutual bail-
relationships, the collusion becomes identifiable. For this purpose, it suffices to
gain bad experiences with few of the colluders in order to conjecture that the

How Social Structure Improves Distributed Reputation Systems 235

group is indeed a collusion. However, if the colluders refrain from establishing
relationships, conventional recommendations provide the only means of mutual
praising. In such a case, their recommendations tend to be dwarfed by the bail-
relationships that well-behaving agents establish. Therefore, regardless of which
option the colluders choose, the impact of praising is marginalized or praising
even becomes counter-productive.

The hypothesis can be tested by comparing the performance of colluding and
non-colluding agents in the presence of social structure. Such comparison has to
distinguish between colluders who opt for making their collusion explicit and
those who resort to conventional recommendations.

Hypothesis 3: Effective and Efficient Dissemination
Social structure allows for a more effective and efficient dissemination
of recommendations.

The intuition behind this hypothesis is twofold. First, recommendations may
be disseminated more convincingly along the relationship network of the social
structure. By disseminating along the trust-relationships, a recommendation is
only obtained by those agents that take it most into account. Therefore, we are
able to economize on the dissemination to agents that would neglect the rec-
ommendation. This yields an increased efficiency of disseminating recommenda-
tions. Second, an agent may self-recommend by stating which agents are ready
to bail for him. According to Section ??, the possibility to self-recommend impli-
cates more effectiveness and efficiency for the dissemination of recommendations.

For the test of this hypothesis, we have to show that a distributed reputation
system with social structure dominates any plausibility based distributed repu-
tation system in terms of both effectiveness and efficiency. The effectiveness of
disseminating recommendations can be evaluated by measuring the effectiveness
of the distributed reputation system itself. In [13], the coefficient of correlation
between individual cooperation costs and utilities has been proposed as such
a measure of effectiveness. More specifically, the higher the coefficient of cor-
relation and the higher the slope of the regression line, the more effective the
distributed reputation system is. The efficiency of disseminating recommenda-
tions can be evaluated in a more straightforward manner by keeping track of the
number of sent recommendation messages.

5 Conclusion

Distributed reputation systems provide an incentive for cooperation in P2P sys-
tems by keeping track of the behavior of autonomous entities. The agents may
cooperate by issuing recommendations of other entities’ trustworthiness. Cur-
rently, the assessment of such recommendations is based on plausibility consid-
erations and evidence awareness. In this paper, we have pointed out that these
assessment methods require a further means of dealing with their shortcomings.
For this purpose, we have proposed that social structure is applied to the dis-
tributed reputation system. We have examined the properties of social structure

236 P. Obreiter, S. Fähnrich, and J. Nimis

and discussed its impact on distributed reputation systems. This led us to the
formulation of three hypotheses of how social structure overcomes the limitations
of plausibility considerations. We have pointed out how the hypotheses can be
tested.

In the future, we will test the hypotheses by the means of simulation. The
tentative simulation results3 corroborate the first two hypotheses and indicate
the validity of the third one. Furthermore, we plan to investigate whether there
is a generic means of augmenting existing distributed reputation systems with
social structure.

References

1. Akerlof, G.: The market for lemons: Quality uncertainty and the market mecha-
nism. Quarterly Journal of Economics 89 (1970) 488–500

2. Obreiter, P., Nimis, J.: A taxonomy of incentive patterns - the design space of
incentives for cooperation. In: Second Intl. Workshop on Agents and Peer-to-Peer
Computing (AP2PC’03), Springer LNCS 2872, Melbourne, Australia (2003)

3. English, C., Wagealla, W., Nixon, P., Terzis, S., Lowe, H., McGettrick, A.: Trusting
collaboration in global computing systems. In: Proc. of the First Intl. Conf. on
Trust Management (iTrust), Heraklion, Crete, Greece (2003) 136–149

4. Kinateder, M., Rothermel, K.: Architecture and algorithms for a distributed rep-
utation system. In Nixon, P., Terzis, S., eds.: Proc. Of the First Intl. Conf. On
Trust Management (iTrust), Heraklion, Greece, Springer LNCS 2692 (2003) 1–16

5. Marti, S., Garcia-Molina, H.: Limited reputation sharing in P2P systems. In: ACM
Conference on Electronic Commerce (EC’04). (2004)

6. Obreiter, P.: A case for evidence-aware distributed reputation systems. In: Second
International Conference on Trust Management (iTrust’04), Oxford, UK, Springer
LNCS 2995 (2004) 33–47

7. Myers, D.G.: Psychology. 6th edn. Worth Publishers (2001)
8. Hogg, M.A.: Intragroup processes, group structure and social identity. In Robinson,

W., ed.: Social Groups and Identities: Developing the Legacy of Henri Taiffel,
Butterworth Heinemann (1996)

9. Giddens, A.: The Constitution of Society: Outline of a Theory of Social Structura-
tion. Polity Press, Cambridge, MA (1984)

10. Yu, B., Singh, M.P.: An evidential model of distributed reputation management.
In: Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’02), Bologna, Italy (2002) 294–301

11. Miranda, H., Rodrigues, L.: Friends and foes: Preventing selfishness in open mobile
ad hoc networks. In: Proc. of the First Intl. Workshop on Mobile Distributed
Computing (MDC’03), Providence, RI, USA, IEEE Computer Society Press (2003)

12. Fähnrich, S., Obreiter, P., König-Ries, B.: The buddy system: A distributed reputa-
tion system based on social structure. In: 7th Intl. Workshop on Data Management
in Mobile Environments, Ulm (2004)

13. Obreiter, P., König-Ries, B., Papadopoulos, G.: Engineering incentive schemes for
ad hoc networks - a case study for the lanes overlay. In: First EDBT-Workshop on
Pervasive Information Management, LNCS 3268. (2004)

3 We discuss the results at http://www.ipd.uka.de/∼obreiter/publications.html

Opinion Filtered Recommendation Trust Model
in Peer-to-Peer Networks�

Weihua Song and Vir V. Phoha

Computer Science, College of Engineering and Science,
Louisiana Tech University, Ruston, LA 71272, USA

{wso003, phoha}@latech.edu

Abstract. A multiagent distributed system consists of a network of het-
erogeneous peers of different trust evaluation standards. A major concern
is how to form a requester’s own trust opinion of an unknown party from
multiple recommendations, and how to detect deceptions since recom-
menders may exaggerate their ratings. This paper presents a novel ap-
plication of neural networks in deriving personalized trust opinion from
heterogeneous recommendations. The experimental results showed that a
three-layered neural network converges at an average of 12528 iterations
and 93.75% of the estimation errors are less than 5%. More important,
the model is adaptive to trust behavior changes and has robust perfor-
mance when there is high estimation accuracy requirement or when there
are deceptive recommendations.

1 Introduction

In a system where no global or central reputation mechanism is available, an
alternative is to aggregate a collection of local trust evaluations, i.e., recom-
mendations. Current recommendation trust models differ in their selections of
recommenders and in their aggregations of recommendations. Examples are so-
cial network topological model by Pujol et al. [1], Bayesian rating model by Mui
et al. [2], Bayesian Network by Y. Wang et al. [3], and Dempster-Shafer belief
model by Y. Bin et al. [4] etc.

Zacharia and Mae’s HISTO model [5] applies raters’ reputations and the de-
viation of the ratings as weights to the recommended trust value. It uses breadth
first search algorithm to find all the referral chains within certain length limit
and branching size. Riggs et al. [6] developed a quality filtering trust model.
The model rates reviewers and applies the quality of the reviewers into merits
of the reviewed papers. Mui et al. [2] proposed a recommendation trust model
based on Beyesian probability theory. A referral chain’s trust is measured by suc-
cessive applications of Beyesian probability of two contiguous references along
the chain. Chernoff Bound is used as a reliability measurement for trust infor-
mation gathered along each chain. Yu et al. [4] presented an evidence model
� This work is supported in part by the Army Research Office under Grant No. DAAD

19-01-1-0646 and by Louisiana Board of Regents under Grant LEQSF(2003-05)-RD-
A-17.

G. Moro, S. Bergamaschi, and K. Aberer (Eds.): AP2PC 2004, LNAI 3601, pp. 237–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

238 W. Song and V.V. Phoha

to evaluate recommendation trust. The model applies Dempster-Shafer theory
to multiple witnesses. Pujol et al. [1] proposed a recommendation trust model
that applies noderanking algorithm to infer a node’s reputation based on social
network topology.

However, there are a few caveats to the approaches mentioned above. First,
different users may arrive at significantly varying estimates of performance of
the same service provider. Second, different users may be able to observe dif-
ferent instances of the performance of a given service provider. Third, decep-
tive recommendations may exist. More sophisticated collaborative trust models
[3][7][8][9][10][11][12] are developed.

Wang et al. [3] applied Naive Bayesian network to recommendation trust
since trust is multifaceted. EigenTrust model of Kamvar et al. [10] focuses on
detecting malicious file providers in peer-to-peer file sharing networks. The model
is built on the notion of transitive trust, i.e., a peer trusts authentic file providers
as well as their recommendations. Yu et al. [12] applied weighted majority tech-
nique to belief function and belief propagation. The model assigns weights to
recommenders and decreases the weights assigned to unsuccessful recommenders.

Our approach is a novel application of neural network techniques in recom-
mendation trust. It derives a requester’s own trust opinion from multiple het-
erogeneous recommendations, i.e., recommendations of different trust estimation
processes and evaluation models with or without deceptions. It concentrates on
the algorithms of selecting qualified recommenders and propagating their recom-
mendations into the requester’s own trust opinion. The approach assumes that a
requester’s trust opinion v0 is a function of M recommenders’ recommendations
vi, i = 1, 2, . . . , M :

v0 = F (v1, v2, . . . , vM) . (1)

What we do is to find out those M recommenders, i.e., qualified recommenders,
and to approximate function F . Suppose there are N movie file providers with
whom the requester and the M recommenders all have direct experiences. Given
the requester’s and the recommenders’ trust opinions of N providers, vj

i , where
i = 0, 1, . . . , M, j = 1, 2, . . . , N , our work is to find a function F such that the
summation of the squared estimation errors is minimized.

min

N∑
j=1

(vj
0 − F (vj

1, v
j
2, . . . , v

j
M))2 . (2)

Where vj
0 stands for the requester’s trust opinion of movie file provider j, and

vj
i stands for recommender i’s trust opinion of movie file provider j. Once F

is found, we can plug in the M recommenders’ trust opinions of the party of
interest and obtain immediately the requester’s trust estimation of the party of
interest.

The rest of the paper is organized as follows. Section 2 develops an ordered
depth-first recommendation trust network and designs an algorithm to identify
qualified recommenders. Section 3 introduces a neural network-based recommen-

Opinion Filtered Recommendation Trust Model in Peer-to-Peer Networks 239

dation trust model. Section 4 presents experimental results. Section 5 concludes
the paper.

2 Ordered Depth-First Recommendation Network and
Qualified Recommenders

An ordered depth-first search for current recommenders is developed. Among
current recommenders, we select qualified recommenders, whose trust opinions
are used to build the opinion filtered neural network trust model (OFNN).

2.1 Ordered Depth-First Recommendation Network

A requester keeps a rated recommender set per trust context. A recommender
set R contains a qualified recommender set QR and an unqualified recommender
set NQR. All qualified recommenders are ranked higher than unqualified rec-
ommenders. Qualified recommenders are ranked by the number of times they
have been selected as qualified recommenders. Unqualified recommenders are
ranked by the number of times they have been selected as recommenders but
not qualified. Initially, the qualified recommender set is empty and the unqual-
ified recommender set consists of all the acquaintances of the requester. The
acquaintances are ranked by their trust values. R is updated and reordered after
the requester sends a new query to every r ∈ R and obtains a current set of
qualified recommenders QRc and unqualified recommenders NQRc.

We use ordered depth-first search (ODFS) for current recommenders Rc. Rc

is made up of those having direct trust experience with the party of interest.
The depth-first search is ordered by recommenders’ rates. That is, a highly
rated recommender’s trust opinion is processed first. We set limits on chain
length and branching size of an ODFS. An ordered depth-first recommendation
network need building only when the qualified recommenders of an OFNN are
unable to provide recommendations for the current trust query.

2.2 Identification of Qualified Recommenders

Qualified recommenders are those in current recommender set Rc and having
direct experiences with a set of parties (under the same trust context) that
the requester also has direct experiences with. We assume peers are willing to
exchange trust opinions for mutual benefits. To identify qualified recommenders
QRc and those parties(movie file providers in our case), a requester first selects
top N active movie providers P with whom he has direct experiences. The
requester exchanges trust opinions of providers P with current recommenders
Rc. A two dimensional array RP is built where element RP [i][j] is either 1 or 0,
representing that recommender ri ∈ Rc has or has not direct trust experiences
with movie file provider pj ∈ P . Recommenders that know less than ceil1 movie
file providers are excluded and movie providers that are known by less than ceil2
recommenders are also excluded. A new RP array is built based on the selected

240 W. Song and V.V. Phoha

recommenders and movie file providers. The top ceil3 recommenders that know
the majority of the movie file providers are selected as qualified recommenders.
Those movie file providers that are known by all the ceil3 qualified recommenders
forms new P .

3 Opinion Filtered Recommendation Trust Model

There is an OFNN per trust context per peer. A peer(requester)’s OFNN under
certain trust context is trained by his and his qualified recommenders’ trust
opinions, for example the trust opinions of movie file providers P . The input layer
of the OFNN contains as many neurons as the number of qualified recommenders.
The input neurons represent the qualified recommenders’ trust opinions. The
output layer contains only one neuron, representing the requester’s trust opinion.
There can be as many hidden layers and hidden neurons as necessary to catch the
nonlinear relationship between input and output values and to satisfy the model’s
convergent speed. We set up a three-layered OFNN with random initial neuron
connections and a random learning rate. We then apply the backpropagation
algorithm [13] to train the OFNN. The details are as the following. Qualified
recommenders’ trust opinions flow forward through the neural network as:

ou =
1

1 + e−W uRu
(3)

Approximation errors flow backward at the output neuron and at the hidden
neurons as:

δ = o(1 − o)(t − o) (4)

δh = oh(1 − oh)whδ (5)

Neuron connections are updated as:

wij = wij + ηδioi (6)

Where W u and Ru represent a weight vector and a reputation vector forwarded
to neuron u respectively. o is the estimated reputation opinion generated by the
output neuron, and oi is the output value of neuron i. t is the requester’s reputa-
tion opinion. wh is the weight of a connection between hidden neuron h and the
output neuron. wij is the weight from neuron i to neuron j. δ and δh stand for
error items at the output neuron and hidden neuron h respectively. Algorithm 1
describes the entire process. The algorithm can be optimized by storing several
most recently used neural networks instead of one last updated neural network.
There is a trade off between memory (storage of more than one neural networks
per trust context) and computation speed (time spent on finding Rc, identifying
QRc and retraining the OFNN).

Opinion Filtered Recommendation Trust Model in Peer-to-Peer Networks 241

Algorithm 1. Build Opinion Filtered Trust Model

1: if (qualified recommenders of the OFNN can not provide recommendations)
2: ordered depth-first search for recommenders Rc;
3: identify qualified recommenders QRc;
4: train Neural Network by backpropagation algorithm;
5: end if
6: update rated recommender set R;
7: input recommendations of the current request through the neural network;
8: output the personalized opinion filtered recommendation trust

4 Experiment Results

We simulated trust behavior of 50 agents in a P2P movie file sharing network.
Total 500 transactions were simulated. Movie file providers and movie file down-
loaders were generated randomly from the 50 agents. A movie file provider’s
trust behavior was evaluated by two factors, file quality and download speed
of the file. Each agent had an average download speed quality u1 and an av-
erage file quality u2. u1 and u2 were randomly generated in a range of [0, 1].
The actual download quality u1 and download speed u2 of a transaction were
generated by identical and independent distributions distributed uniformly and
randomly centering with mean value u1 and u2 respectively. A single transaction
was evaluated by the weighted average of u1 and u2. The normalized weights of
those two factors varied from one agent to another. The weights were generated
randomly in a range of [0, 1]. We also simulated non deceptive and deceptive
recommendations. We assume a recommendation follows:

vrec = min(1, cvact) . (7)

Where c is a factor larger than zero, vact is the actual trust rating, and vrec is the
recommendation. If c is larger or less than 1, the recommendation is deceptive.

Our experiments were based on the simulated data. We set 10 different es-
timation error thresholds and ran the opinion filtered recommendation trust
model twenty times for each size. To train a trust neural network, we randomly
set learning speed η in a range of [0.4, 0.6], and set the initial weights of neuron
connections in a range of [-0.05, 0.05]. A correct estimation is the one satisfying
|oi−ti|

ti
≤ θ (θ is a constant), and correctness function T is:

T (oi, ti) =
{

1, for |oi−ti|
ti

≤ θ

0, otherwise
(8)

Where θ is an estimation error threshold, oi and ti stand for the output trust
and the requester’s actual trust evaluation of movie file provider pi individually.

Table 1 shows the average convergent speed and estimation correctness un-
der various estimation error thresholds. The estimations were 100% correct and
converged at 404,047 iterations if the estimation errors were allowed to be no

242 W. Song and V.V. Phoha

more than 15%. We had 93.8% correct estimations if the estimation accuracy
was 95% and above. Figure 1 shows the performance of the opinion filtered trust
model under different accuracy requirements with and without deceptive recom-
mendations. The model converged at an average of 34.8% more iterations under
deceptive recommendations than under honest recommendations when estima-
tion errors were set less than 15%. When estimation errors were in the range from
15% to 30%, surprisely, the model converged faster by 12.5% under deceptive
recommendations than under honest recommendations. This might result from
differences in randomly generated learning rates and initial weights of neuron
connections. Estimation error threshold θ = 10% is a critical point. The con-
vergent speed dramatically slows down if θ is less 10%. Figure 2 compares the
convergent speed and estimation accuracy under 36 and 16 sets of recommen-
dations with deceptions. It demonstrates that the model provided comparable
correctness estimations with 6.4% less iterations under 36 sets of recommenda-
tions .

Table 1. Convergence and Correctness of Opinion Filtered Trust Model

Estimation Error Learning Rate Convergence Correctness
θ η (number of iterations) 16

i T (oi, ti)
30% 0.485 54042 16
25% 0.48 165260 16
20% 0.49 273207 16
15% 0.515 404047 16
10% 0.555 551989 15
9% 0.475 684838 15
8% 0.5 810923 15
7% 0.59 1006285 15
6% 0.595 1221718 15
5% 0.595 1435770 15

5 Conclusion

This paper studies the problem of heterogeneous and deceptive recommendations
in trust management. It focuses on how to accurately and effectively derive trust
value of an unknown party from multiple recommendations. It designs an ordered
process of depth-first search for recommenders. It also develops an algorithm to
identify qualified recommenders and to aggregate their recommendations. The
neural network trust model helps an agent to minimize the effect of deceptions
and heterogeneous trust evaluation standards. The model derives a trust value
based on an agent’s own trust standards and thus makes trust decision easier.
The experimental results show that the neural network model converges at fast
speed with high accuracy. More important, the model has good performance
under various accuracy requirements and is capable to aggregate multiple recom-
mendations non-linearly. For simplicity, the experiments were carried out based

Opinion Filtered Recommendation Trust Model in Peer-to-Peer Networks 243

(a) Comparison of convergent speed (b) Comparison of estimation cor-
rectness

Fig. 1. Performance of the trust model with and without deceptions under various
estimation accuracy requirement

(a) Comparison of convergent speed (b) Comparison of estimation cor-
rectness

Fig. 2. Performance of the trust model trained by 16 and 36 sets of recommendations
with deceptions under various estimation accuracy requirement

on a simple deception model and on weighted average trust estimation processes.
Conceptually, the model can be applied to more complicated deceptions and to
different estimation processes and local trust models. The model is adaptive
to changes of agents’ trust behaviors and expertise as well. This can be easily
achieved by retraining a recommendation trust neural network.

In future work, we plan to integrate the model in a dynamic environment
of a multiagent system, where agents adapt their strategies and trust models.
We also plan to study a recommender’s reputation and compare various trust
models’ performance.

244 W. Song and V.V. Phoha

References

1. Pujol, J., Sang, R., Halberstadt, A.: Extracting reputation in multi agent systems
by means of social network topology. In: Proceedings of the first International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS02). (2002)

2. Mui, L., Mohtashemi, M., Halberstadt, A.: A computational model for trust and
reputation. In: Proc. 35th Hawaii International Conference on System Sciences.
(2002)

3. Wang, Y., Vassileva, J.: Beyesian network-based trust model. In: Proc. of
IEEE/WIC International Conference on Web Intelligence (WI2003). (2003)

4. Yu, B., Singh, M.P.: Towards a probabilistic model of distributed reputation man-
agement. In: Proc. 4th Workshop on Deception, Fraud and Trust in Agent Societies.
(2001)

5. Zacharia, G., Mae, P.: Collaborative reputation mechanisms in electronic market-
places. In: Proc. 32nd Hawaii International Conf on System Sciences. (1999)

6. Riggs, T., Wilensky, R.: An algorithm for automated rating of reviewers. In: Pro-
ceedings of first ACM and IEEE Joint Conference on Digital Libraries (JCDL01).
(2001)

7. Azzedin, F., Maheswaran, M.: Evolving and managing trust in grid computing
systems. In: Proceedings of IEEE Canadian Conference on Electrical & Computer
Engineering (CCECE02). (2002)

8. Daniani, E., Vimercati, S., Paraboschi, S., Samarati, P., Violante, F.: A reputation-
based approach for choosing reliable resources in peer-to-peer networks. In: Pro-
ceedings of the 9th ACM Conference on Computer and Communications Security
(CCS02). (2002)

9. Gupta, M., Judge, P., Ammar, M.: A reputation system for peer-to-peer networks.
In: Proceedings of the 13th ACM International workshop on Network and Operat-
ing Systems Support for Design Audio and Vedio (NOSSDAV03). (2003)

10. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The eigentrust algorithm for repu-
tation management in p2p networks. In: Proceedings of the twelfth ACM Interna-
tional World Wide Web Conference (WWW03). (2003)

11. Schafer, J.B., Konstan, J., J.Riedl: Meta-recommendation systems: User-controlled
integration of diverse recommendations. In: Proceedings of ACM Conference on
Information and Knowledge Management (CIKM02). (2002)

12. Yu, B., Singh, M.P.: Detecting deception in reputation management. In: AA-
MAS’03. (2003)

13. T.Mitchell: Machine Learning. McGraw-Hill (1997)

Author Index

Ai, Changquan, 193
Amamiya, Makoto, 62

Bergamaschi, Sonia, 120
Boella, Guido, 86
Börner, Katy, 14

Chen, Jih-Yin, 221
Chiang, Chih-He, 221
Chun, Brent, 28
Cortés, Ulises, 98
Cranefield, Stephen, 153
Crespo, Arturo, 1
Cruz, Isabel F., 108

Dasgupta, Prithviraj(Raj), 213
Dogdu, Erdogan, 144
Dury, Arnaud, 185

Fähnrich, Stefan, 229
Fillottrani, Pablo R., 120
Fletcher, George H.L., 14

Garcia-Molina, Hector, 1
Garside, Noel, 153
Gelati, Gionata, 120

Hsieh, Chun-Wei, 221
Hsu, Feihong, 108
Hsu, Jane Yung-jen, 221
Huang, Ting-Shuang, 221
Hu, Zhengguo, 193

Jin, Xiaolong, 173

Kogo, Akihiro, 62
Koyanagi, Keiichi, 161
Krishnamoorthy, Savitha, 40

Lauria, Mario, 40
Liu, Jiming, 173

Madiraju, Praveen, 144
Marshall, Lindsay, 54

Matsuno, Daisuke, 62
Mine, Tsunenori, 62

Nimis, Jens, 229
Nowostawski, Mariusz, 153

Obreiter, Philipp, 229
Oliveira, Marcos De, 153

Periorellis, Panayiotis, 54
Phoha, Vir V., 237
Pitsilis, Georgios, 54
Pitt, Jeremy, 74
Prasad, Sushil K., 144
Pujol, Josep M., 98
Purvis, Martin, 153

Ramirez-Cano, Daniel, 74
Regli, William, 201
Regli, William C., 132

Sheth, Hardik A., 14
Song, Weihua, 237
Sultanik, Evan A., 132
Sunderraman, Rajshekhar, 144

Tang, Yan, 193
Thomas, Michael, 201
Torre, Leendert van der, 86
Tsuchiya, Takeshi, 161

Vahdat, Amin, 28
Vaidyanathan, Karthikeyan, 40

Willmott, Steven, 98

Xiao, Huiyong, 108

Yang, Zhen, 173
Yoshikawa, Chad, 28
Yoshinaga, Hirokazu, 161

Zhang, Lin, 193
Zhang, Yang, 193

	Frontmatter
	Semantic Overlay Networks for P2P Systems
	Unstructured Peer-to-Peer Networks: Topological Properties and Search Performance
	Distributed Hash Queues: Architecture and Design
	DiST: A Scalable, Efficient P2P Lookup Protocol
	A Policy for Electing Super-Nodes in Unstructured P2P Networks
	ACP2P: Agent Community Based Peer-to-Peer Information Retrieval
	Emergent Structures of Social Exchange in Socio-cognitive Grids
	Permission and Authorization in Policies for Virtual Communities of Agents
	On Exploiting Agent Technology in the Design of Peer-to-Peer Applications
	Peer-to-Peer Semantic Integration of XML and RDF Data Sources
	The SEWASIE Multi-agent System
	Service Discovery on Dynamic Peer-to-Peer Networks Using Mobile Agents
	An Agent Module for a System on Mobile Devices
	Multi-agent System Technology for P2P Applications on Small Portable Devices
	Coordinator Election Using the Object Model in P2P Networks
	The Dynamics of Peer-to-Peer Tasks: An Agent-Based Perspective
	Peer-to-Peer Computing in Distributed Hash Table Models Using a Consistent Hashing Extension for Access-Intensive Keys
	A Practical Peer-Performance-Aware DHT
	Peer-to-Peer Data Lookup for Multi-agent Systems
	Intelligent Agent Enabled Genetic Ant Algorithm for P2P Resource Discovery
	Photo Agent: An Agent-Based P2P Sharing System
	How Social Structure Improves Distributed Reputation Systems -- Three Hypotheses
	Opinion Filtered Recommendation Trust Model in Peer-to-Peer Networks
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

